共查询到20条相似文献,搜索用时 31 毫秒
1.
P. Hvelplund L. H. Andersen C. Brink D. H. Yu D. C. Lorents R. Ruoff 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1994,30(4):323-326
Electron capture in collisions of C 60 2+ and C 60 3+ molecular ions with atomic and molecular gases has been studied at impact energies around 100 keV. The cross-section dependence on the target-ionization potentials is discussed, and a simple over-barrier model is evoked to explain the energy dependences. The cross sections for endothermic processes are discussed in the light of a simple two-state model, and a general understanding of their behaviour is obtained. 相似文献
2.
Barlow CK Hodges BD Xia Y O'Hair RA McLuckey SA 《Journal of the American Society for Mass Spectrometry》2008,19(2):281-293
Multiply deprotonated hexadeoxyadenylate anions, (A6-nH)(n-), where n = 3-5, have been subjected to reaction with a range of divalent transition-metal complex cations in the gas phase. The cations studied included the bis- and tris-1,10-phenanthroline complexes of CuII, FeII, and CoII, as well as the tris-1,10-phenanthroline complex of RuII. In addition, the hexadeoxyadenylate anions were subjected to reaction with the singly charged FeIII and CoIIIN,N'-ethylenebis(salicylideneiminato) complexes. The major competing reaction channels are electron-transfer from the oligodeoxynucleotide anion to the cation, the formation of a complex between the anion and cation, and the incorporation of the transition-metal into the oligodeoxynucleotide. The latter process proceeds via the anion/cation complex and involves displacement of the ligand(s) in the transition-metal complex by the oligodeoxynucleotide. Competition between the various reaction channels is governed by the identity of the transition-metal cation, the coordination environment of the metal complex, and the oligodeoxynucleotide charge state. In the case of the divalent metal phenanthroline complexes, competition between electron-transfer and metal ion incorporation is particularly sensitive to the coordination number of the reagent metal complexes. Both electron-transfer and metal ion incorporation occur to significant extents with the bis-phenanthroline ions, whereas the tris-phenanthroline ions react predominantly by metal ion incorporation. To our knowledge this work reports the first observations of the gas-phase incorporation of multivalent transition-metal cations into oligodeoxynucleotide anions and represents a means for the selective incorporation of transition-metal counter-ions into gaseous oligodeoxynucleotides. 相似文献
3.
Multiply protonated ions of disulfide-intact and -reduced peptides were generated by electrospray ionization and studied by Fourier transform ion cyclotron resonance mass spectrometry. The effects of disulfide bonds on gas-phase deprotonation reactions and hydrogen/deuterium (H/D) exchange were investigated. Insight into conformations was gained from molecular dynamics calculations. For ions from three small peptides containing 9–14 amino acid residues, H/D exchange is more sensitive to changes in conformation than deprotonation. However, with both gas-phase reactions the more diffuse forms of the peptides (as determined by molecular modeling) react more readily. The effects of disulfide cleavage on the conformations and on the reactions were found to depend upon the sequence of the peptide. For [M + 3H]3+ of TGF-α (34–43), reduction of the disulfide linkage leads to a greatly extended structure and a dramatic increase in the rate and extent of H/D exchange. In contrast, [M + 2H]2+ of Arg8 -vasopressin becomes slightly more compact upon cleavage of the disulfide bond; these reduced ions are slower to react. For [M + 3H]3+ of somatostatin-14, reduction of the disulfide bond has little effect on conformation or gas-phase reactivity. Overall, these results indicate that there is no general rule on how cleavage of a disulfide bond will effect a peptide ion’s gas-phase reactivity. 相似文献
4.
5.
6.
Song -Cheng Sun David E. Reed John K. Cullison Lyman H. Rickard Fred M. Hawkridge 《Mikrochimica acta》1988,96(1-6):97-104
The heterogeneous electron transfer reactions of cytochromec occurring at platinum, gold and mercury electrodes are shown to be quasi-reversible. In each case the electrodes have not been modified and the cytochromec samples are native. This work extends previous work and demonstrates that biological molecule electron transfer reactions can be studied at clean metal surfaces to gain fundamental knowledge of the mechanisms of these reactions. 相似文献
7.
Rini M Pines D Magnes BZ Pines E Nibbering ET 《The Journal of chemical physics》2004,121(19):9593-9610
We investigate one of the fundamental reactions in solutions, the neutralization of an acid by a base. We use a photoacid, 8-hydroxy-1,3,6-trisulfonate-pyrene (HPTS; pyranine), which upon photoexcitation reacts with acetate under transfer of a deuteron (solvent: deuterated water). We analyze in detail the resulting bimodal reaction dynamics between the photoacid and the base, the first report on which was recently published. We have ascribed the bimodal proton-transfer dynamics to contributions from preformed hydrogen bonding complexes and from initially uncomplexed acid and base. We report on the observation of an additional (6 ps)(-1) contribution to the reaction rate constant. As before, we analyze the slower part of the reaction within the framework of the diffusion model and the fastest part by a static, sub-150 fs reaction rate. Adding the second static term considerably improves the overall modeling of the experimental results. It also allows to connect experimentally the diffusion controlled bimolecular reaction models as defined by Eigen-Weller and by Collins-Kimball. Our findings are in agreement with a three-stage mechanism for liquid phase intermolecular proton transfer: mutual diffusion of acid and base to form a "loose" encounter complex, followed by reorganization of the solvent shells and by "tightening" of the acid-base encounter complex. These rearrangements last a few picoseconds and enable a prompt proton transfer along the reaction coordinate, which occurs faster than our time resolution of 150 fs. Alternative models for the explanation of the slower "on-contact" reaction time of the loose encounter complex in terms of proton transmission through a von Grotthuss mechanism are also discussed. 相似文献
8.
James L. Stephenson Gary J. Van Berkel Scott A. McLuckey 《Journal of the American Society for Mass Spectrometry》1997,8(6):637-644
Multiply protonated horse skeletal muscle holomyoglobin and apomyoglobin have been subjected to ion-ion proton transfer reactions with anions derived from perfluoro-1,3-dimethylcyclohexane in a quadrupole ion trap operated with helium as a bath gas at 1 mtorr. Neither the apomyoglobin nor holomyoglobin ions show any sign of fragmentation associated with charge state reduction to the 1 + charge state. This is particularly noteworthy for the holomyoglobin ions, which retain the noncovalently bound heme group. For example, no sign of heme loss is associated with charge state reduction from the 9 + charge state of holomyoglobin to the 1 + charge state despite the eight consecutive highly exothermic proton transfer reactions required to bring about this charge change. This result is consistent with calculations that show the combination of long ion lifetime and the high ion-helium collision rate relative to the ion-ion collision rate makes fragmentation unlikely for high mass ions in the ion trap environment even for noncovalently bound complexes of moderate binding strength. The ion-ion proton transfer rates for holo- and apomyoglobin ions of the same charge state also were observed to be indistinguishable, which supports the expectation that ion-ion proton transfer rates are insensitive to ion structure and are determined primarily by the attractive Coulomb field. 相似文献
9.
Gas-phase behaviour of negative ions produced from thiazidic diuretics under electrospray conditions
Garcia P Popot MA Fournier F Bonnaire Y Tabet JC 《Journal of mass spectrometry : JMS》2002,37(9):940-953
A systematic mass spectrometric study of 10 thiazidic diuretics and related compounds was undertaken by mass spectrometry (MS) with electrospray ionization in the negative ion mode. Collisional dissociation 'in-source' (CID-MS) and in a low-pressure collision cell (CID-MS/MS) were compared in both excitation regions. Spectra obtained by CID-MS and by CID-MS/MS were matched. Using the two methods, loss of HCl and consecutive dissociations from 2HCl losses were exhibited from compounds such as methyclothiazide and trichlormethiazide but not from other thiazidic diuretics that contain chlorine substituents in the aromatic moiety. However, deprotonated dichlorphenamide gave rise to loss of HCl by CID-MS and CID-MS/MS. For other diuretics such as hydroflumethiazide and hydrochlorothiazide, the loss of HCN and [HCN + SO(2)] was relevant. Reaction mechanisms were checked by means of deuterium-hydrogen exchange, which showed that deprotonation took place regioselectively on the heterocyclic moiety. The cleavage pathways require molecular isomerization forming ion-dipole complexes prior to decompositions, allowing long-distance proton transfer for neutral elimination. Identifications of the most specific fragmentations presented in this paper were applied to the screening and unambiguous identification of diuretics for horse doping control. 相似文献
10.
William J. Herron Douglas E. Goeringer Scott A. McLuckey 《Journal of the American Society for Mass Spectrometry》1995,6(6):529-532
Isolated triply and doubly charged anions of the single-stranded deoxynucleotide 5′-d(AAAA)-3′ were allowed to undergo ion-ion proton transfer reactions with protonated pyridine cations within a quadrupole ion trap mass spectrometer. Sufficiently high ion number densities and spatial overlap of the oppositely charged ion clouds could be achieved to yield readily measurable rates. Three general observations were made: (1) the ion-ion reaction rate constants were estimated to be 10? (7 ? 8) cm3 ion?1 s?1; (2) the ion-ion reaction rates were found to be dependent on the reactant ion number density, which could be controlled by both the reactant ion number and the pseudopotential well depth, and (3) very little fragmentation, if any, was observed, as might normally be expected with highly exothermic proton transfer reactions. 相似文献
11.
Gas-phase stability of tetrahedral multiply charged anions: a conceptual and computational DFT study
Multiply charged anions (MCA's) are unstable relative to electron autoejection; however, the repulsive Coulomb barrier (RCB) provides electronic stability. In view of their interest in biological systems, the behavior of isolated AsO(4)(3-), PO(4)(3-), SO(4)(2-), and SeO(4)(2-) in the gas phase and in solution has been studied. To calculate the RCB values, the electrostatic and point charge model-two methods currently used in the literature-are applied, together with a recently introduced Conceptual Density Functional Theory (DFT) based approach. The relative stability of the above-mentioned MCA's is compared. The trends of the RCB are analyzed by including analogous compounds from the second and third row and by passing from dianionic to trianionic systems. Considering the effect of solvent, using the SCI-PCM solvent model, the evolution of the RCB when passing to higher dielectric constants is evaluated. The RCB is related to the properties of the system as polarizability/softness. Both a numerical and a conceptual correlation between the RCB and the global softness is found. 相似文献
12.
Reactions of polyatomic organic radicals with gas phase ions have been studied at thermal energy using a flowing afterglow-selected ion flow tube (FA-SIFT) instrument. A supersonic pyrolysis nozzle produces allyl radical (CH2CHCH2) and ortho-benzyne diradical (o-C6H4) for reaction with ions. We have observed: [CH2CHCH2 + H3O+ --> C3H6+ + H2O], [CH2CHCH2 + HO- --> no ion products], [o-C6H4 + H3O+ --> C6H5+ + H2O], and [o-C6H4 + HO- --> C6H3- + H2O]. The proton transfer reactions with H3O+ occur at nearly every collision (kII approximately with 10(-9) cm3 s(-1)). The exothermic proton abstraction for o-C6H4 + HO- is unexpectedly slow (kII approximately with 10(-10) cm3 s(-1)). This has been rationalized by competing associative detachment: o-C6H4 + HO- --> C6H5O + e-. The allyl + HO- reaction proceeds presumably via similar detachment pathways. 相似文献
13.
Lee HJ Svahn E Swanson JM Lepp H Voth GA Brzezinski P Gennis RB 《Journal of the American Chemical Society》2010,132(45):16225-16239
Cytochrome c oxidase (CytcO), the final electron acceptor in the respiratory chain, catalyzes the reduction of O(2) to H(2)O while simultaneously pumping protons across the inner mitochondrial or bacterial membrane to maintain a transmembrane electrochemical gradient that drives, for example, ATP synthesis. In this work mutations that were predicted to alter proton translocation and enzyme activity in preliminary computational studies are characterized with extensive experimental and computational analysis. The mutations were introduced in the D pathway, one of two proton-uptake pathways, in CytcO from Rhodobacter sphaeroides . Serine residues 200 and 201, which are hydrogen-bonded to crystallographically resolved water molecules halfway up the D pathway, were replaced by more bulky hydrophobic residues (Ser200Ile, Ser200Val/Ser201Val, and Ser200Val/Ser201Tyr) to query the effects of changing the local structure on enzyme activity as well as proton uptake, release, and intermediate transitions. In addition, the effects of these mutations on internal proton transfer were investigated by blocking proton uptake at the pathway entrance (Asp132Asn replacement in addition to the above-mentioned mutations). Even though the overall activities of all mutant CytcO's were lowered, both the Ser200Ile and Ser200Val/Ser201Val variants maintained the ability to pump protons. The lowered activities were shown to be due to slowed oxidation kinetics during the P(R) → F and F → O transitions (P(R) is the "peroxy" intermediate formed at the catalytic site upon reaction of the four-electron-reduced CytcO with O(2), F is the oxoferryl intermediate, and O is the fully oxidized CytcO). Furthermore, the P(R) → F transition is shown to be essentially pH independent up to pH 12 (i.e., the apparent pK(a) of Glu286 is increased from 9.4 by at least 3 pK(a) units) in the Ser200Val/Ser201Val mutant. Explicit simulations of proton transport in the mutated enzymes revealed that the solvation dynamics can cause intriguing energetic consequences and hence provide mechanistic insights that would never be detected in static structures or simulations of the system with fixed protonation states (i.e., lacking explicit proton transport). The results are discussed in terms of the proton-pumping mechanism of CytcO. 相似文献
14.
Proton transfer (pT) reactions in biochemical processes are often mediated by chains of hydrogen-bonded water molecules. We use hybrid density functional calculations to study pT along quasi one-dimensional water arrays that connect an imidazolium-imidazole proton donor-acceptor pair. We characterize the structures of intermediates and transition states, the energetics, and the dynamics of the pT reactions, including vibrational contributions to kinetic isotope effects. In molecular dynamics simulations of pT transition paths, we find that for short water chains with four water molecules, the pT reactions are semi-concerted. The formation of a high-energy hydronium intermediate next to the proton-donating group is avoided by a simultaneous transfer of a proton from the donor to the first water molecule, and from the first water molecule into the water chain. Lowering the dielectric constant of the environment and increasing the water chain length both reduce the barrier for pT. We study the effect of the driving force on the energetics of the pT reaction by changing the proton affinity of the donor and acceptor groups through halogen and methyl substitutions. We find that the barrier of the pT reaction depends linearly on the proton affinity of the donor but is nearly independent of the proton affinity of the acceptor, corresponding to Br?nsted slopes of one and zero, respectively. 相似文献
15.
Amii H Ichihara Y Nakagawa T Kobayashi T Uneyama K 《Chemical communications (Cambridge, England)》2003,(23):2902-2903
N-Allylic difluoroenamines exhibited unusual behaviors under thermal conditions; N-allyl difluoroenamines in refluxing xylene afforded not only aza-Claisen rearrangement products, but also 2-azabicyclo[2.1.1]hexanes, whose formation could be explained via intramolecular [2+2]-cycloaddition, whilst N-prenyl difluoroenamine underwent an ene reaction to give the pyrrolidine as a sole product. 相似文献
16.
Aurelia Pascariu Gheorghe Ilia Alina Bora Alina Bora Smaranda Iliescu Adriana Popa Gheorghe Dehelean Liliana Pacureanu 《Central European Journal of Chemistry》2003,1(4):491-534
Wittig and Wittig-Horner reactions are favorite tools in preparative organic chemistry. These olefination methods enjoy widespread
and recognition because of their simplicity, convenience, and effciency. Phase transfer catalysis (PTC) is a very important
method in synthetic organic chemistry having many advantages over conventional, homogenous reaction procedures. In this paper,
we attempt to summarize the aspects concerning Wittig and Wittig-Horner reactions that take place under phase transfer catalysis
conditions. 相似文献
17.
18.
R. Houriet E. Rolli R. Flammang A. Maquestiau G. Bouchoux 《Journal of mass spectrometry : JMS》1987,22(12):770-774
The ion-molecule reactions between [CH3X]+˙ [CH3XH] +, [CH3XCH3]+ ions (X = F, Cl, Br, I) and a number of nucleophiles have been studied by ion cyclotron resonance techniques. Protonation of the nucleophiles is observed to occur from both the molecular ions [CH3]X+˙ and protonated species [CH3XH]+ whereas dimethylhalonium ions [CH3XCH3]+ react principally by methyl cation transfer. A notable exception occurs in methyl iodide where the molecular ions [CH3I]+˙ act both as proton and methyl cation donors, whereas dimethyliodonium ions are found unreactive. The results are discussed with reference to the use of alkyl halides as reagent gases in chemical ionization experiments. 相似文献
19.
Leclerc E Buchmann W Taphanel MH Morizur JP 《Rapid communications in mass spectrometry : RCM》2002,16(7):686-695
Ion/molecule reactions between O=P(OCH(3))(2)(+) phosphonium ions and six aromatic hydrocarbons (benzene, toluene, 1,2,4-trimethylbenzene, naphthalene, acenaphthylene and fluorene) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2)(+) phosphonium ions, formed by electron impact from neutral trimethyl phosphite, were found to react with aromatic hydrocarbons (ArHs) to give (i) an adduct [ArH, O=P(OCH(3))(2)](+) and (ii) for ArHs which have an ionization energy below or equal to 8.14 eV, a radical cation ArH(+ *) by charge transfer reaction. Collision-induced dissociation experiments, which produce fragment ions other than the O=P(OCH(3))(2)(+) ions, indicate that the adduct ions are covalent species. Isotope-labeled ArHs were used to elucidate fragmentation mechanisms. The charge transfer reactions were investigated using density functional theory at the B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G(d,p) level of theory. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2)(+) and benzene is described. 相似文献
20.
Donald R. Franceschetti J. Ross Macdonald 《Journal of Electroanalytical Chemistry》1979,101(3):307-316
Several of the ways in which diffusion of an electroactive species may affect the small-signalresponse of an electrochemical system are examined, with particular attention to cases in which the electrode reaction produces or consumes a neutral species whose concentration at the electrode surface is determined by diffusion through the electrode. The conventional (time domain) rate and diffusion equations may be expressed in the frequency domain through the use of complex, frequency-dependent rate constants, whose form reflects the sequence of events in the overall reaction, including possible adsorption steps, and leads directly to equivalent-circuit representations of the pertinent parts of the system response. The complex rate constant formalism also allows the immediate generalization of existing exact treatments of unsupported systems to include such diffusion effects. 相似文献