首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Absorbance-detected magnetic resonance (ADMR) of the light-harvesting complex LHC II of spinach revealed two triplet contributions, having differentD values, but equalE value (|E|=0.00379 cm?1). The two triplets are assigned to two of the three carotenoids present in LHC II: lutein (|D|=0.03853 cm?1) and neoxanthin (|D|=0.04003 cm?1). The ADMR-detected Triplet-minus-Singlet (T—S) optical difference spectrum of the carotenoid (Car) triplet transition of LHC II showed, apart from bands in the Car absorption region, a contribution in the chlorophyll (Chl) absorption region due to a change in interaction between lutein and Chla at 670 nm, and neoxanthin and Chla at 670 and 677 nm. From Linear Dichroic (LD-)ADMR-detected LD-(T—S) spectra we have determined that the tripletz-axis (which corresponds roughly to the polyenal axis) of lutein and neoxanthin makes an angle of 47° and 38° with theQ y transition moment of their adjacent Chla molecules, for the Chls absorbing at 670 and 677 nm, respectively. TheT z triplet magnetic transition moment of lutein is parallel to the lutein singlet and triplet absorptions, whereas theT x axis of neoxanthin makes an angle of about 20 degrees with the optical transition moments of the carotenoid molecule. The major Chla absorption bands of the optical absorption spectrum and the ADMR-detected T—S spectrum is best explained by assuming that all Chla is present in dimers. It is proposed that a free Chl dimer absorbs at 664 and 670 nm, whereas a Chl dimer bound to a carotenoid absorbs at 670 and 677 nm.  相似文献   

2.
X-band electron paramagnetic resonance (EPR) studies are carried out on Fe3+ ions doped in ammonium dihydrogen phosphate (ADP) single crystals at room temperature. The crystal field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations. The obtained values of spin Hamiltonian and zero-field parameters of the Fe3+ ion in ADP are: g = 1.994 ± 0.002, |D| = (220 ± 5) × 10?4 cm?1 and a = (640 ± 5) × 10?4 cm?1. On the basis of EPR data, the site symmetry of the Fe3+ ion in the crystal is discussed. The Fe3+ ion enters the lattice substitutionally replacing the NH4 + sites. The optical absorption of the crystal is also studied at room temperature in the wavelength range of 195–925 nm. The energy values of different orbital levels are calculated. The observed bands are assigned as transitions from the 6 A 1g (S) ground state to various excited quartet levels of the Fe3+ ion in a cubic crystalline field. From the observed band positions, Racah interelectronic repulsion parameters (B and C), cubic crystal field splitting parameter (D q ) and Trees correction are calculated. There values are: B = 970, C = 1,923, D q  = 1,380 cm?1 and α = 90 cm?1, respectively. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The zero-field splitting (ZFS) parameters are also determined theoretically using B kq parameters estimated from the superposition model. The values of ZFS parameters thus obtained are |D| = (213 ± 5) × 10?4 cm?1 and |E| = (21 ± 5) × 10?4 cm?1.  相似文献   

3.
The triplet-sensitized photodecomposition of azocumene into nitrogen and cumyl radicals is investigated by time-resolved electron paramagnetic resonance and absorption spectroscopy. The radicals are found to be created spin polarized with a yield depending on the strength of the applied magnetic field. The phenomenon arises because in triplet azocumene, the decay into radicals competes with a fast triplet-sublevel selective intersystem crossing back to the azocumene ground state. The size of the initial spin polarization of the radicals and the magnetic field effect on their yield are determined in solvents of different viscosities. Data analysis yields rate constants for the intersystem crossing and the cleavage reaction of triplet azocumene as well as its zero-field splitting D ZFS. At room temperature in nonpolar solvents, the most probable values are: k x ?=?k y ?=?1.2?×?1011?s?? and k z ?=?1.9?×?1010?s?? for the intersystem crossing from the energetically lower and upper triplet substates, respectively, k p ?=?1.6?×?109?s?? for the cleavage reaction and for the zero-field splitting D ZFS?=???.4?×?1010?s?? (0.18?cm??).  相似文献   

4.
Electron spin resonance has been investigated in zinc oxide single crystals containing vanadium. Several groups of ordinary and forbidden transitions can be observed. The experimental results are interpreted with the aid of the spin Hamiltonian, for which the following parameters were determined:g∥=1.945; ⊥=1.937; ¦D¦=750×10?4 cm?1, ¦A¦=68 × 10?4 cm?1; ¦B ¦=93×10?4 cm?1; ¦A?P¦=65×10?4cm?1.  相似文献   

5.
The study of the gas-phase infrared spectrum of C2H6 in the region of the perpendicular CH-stretching band, ν7, near 3000 cm?1 is extended for the ΔK = + 1 subbands as far as K = 20. The spectral resolution of ~0.030 cm?1 is increased to ~0.015 cm?1 by deconvolution. The earlier investigation of this band for KΔK = +9 to ?5, is repeated with greater accuracy, providing more reliable ground-state constants (cm?1): B0 = 0.663089 ± 24, D0J = (0.108 ± 4) × 10?5, D0JK = (0.50 ± 7) × 10?5. The molecular constants (cm?1) for the ν7 fundamental are B7 = 0.66310 ± 3, A7 = 2.682, ν0 = 2985.39, ζ7 = 0.128. A discussion of resonance effects in this band, in particular x-y-Coriolis and Fermi resonance, is given.  相似文献   

6.
The pure rotational Raman spectrum of 11BF3 has been photographed. Great care was taken in the analysis to consider all the unresolved components under each observed Raman line profile. If this is ignored, systematic errors result. The final set of molecular constants obtained was B0 = 0.34502(±3 × 10?5)cm?1, DJ = 4.38(±0.10) × 10?7cm?1, and DJK = ?9.1(±1.0) × 10?7cm?1.  相似文献   

7.
The infrared spectrum of CH2D2 has been recorded between 1100 and 1360 cm?1 with a SISAM-type spectrometer whose resolution limit is about 0.015 cm?1 in our spectrum. Some lines have been identified as transitions of the ν3 parallel band of CH3D. The band center ν = 1236.2786 ± 0.0010 cm?1 and a set of upper state constants was obtained for the ν9 band of CH2D2. A perturbation was pointed out in ν9; nevertheless, all frequencies have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

8.
Europium diffusion in samarium sulfide was studied in the temperature range from 780 to 1100°C. Data on the diffusion coefficient and activation energies for the diffusion of europium in single-crystal and polycrystalline SmS samples were obtained. In single-crystal samarium sulfide, europium was shown to migrate predominantly over lattice sites (D ? 10?12?10?9 cm2/s). In SmS polycrystals, diffusion was found to exhibit a complex pattern and have both a slow (D ? 10?10?10?9 cm2/s) and a fast (D ? 10?8?10?7 cm2/s) component. Europium diffusion in a polycrystal is primarily due to europium migration over the boundaries of single-crystal grains in the polycrystal, whose characteristic size is assumed to be that of x-ray coherent-scattering regions.  相似文献   

9.
Rotational analysis of the (0,0) band of the B2Σ-X2Σ transition of ScS is reported. Spectrographic illustration of a hyperfine coupling transition in the ground state is demonstrated for the first time. This enables an order of magnitude to be obtained for γ″ (~0.003 cm?1). The results for the other constants were: X state: B″ = 0.1971 cm?1, D″ = 5 × 10?8cm?1, 4b = 0.23 cm?1 (equal to that for ScO within the limits of measurement uncertainty); B state: B′ = 0.1853 cm?1, D′ = 6 × 10?8cm?1, γ′ = ?0.0594 cm?1, which can be compared with pA2Π = 0.060 cm?1. It was found that the two excited states A2Π and B2Σ constitute an excellent example of pure precession (ppp = 0.058 cm?1, and this enables the vibrational levels of A2Π to be numbered.  相似文献   

10.
The infrared spectrum of CH2D2 has been recorded in the region of 1345 to 1561 cm?1 with a resolution of 0.030 to 0.026 cm?1. Most of the observed lines have been assigned to transitions of the ν3 band of CH2D2. However, 114 lines have been identified as transitions of the ν2 band of H216O whose band origin has been directly determined to be 1594.7472 ± 0.0030 cm?1. A few weak lines, probably belonging to the ν5 fundamental of CH2D2, remain unassigned. The band center ν = 1435.1326 ± 0.0030 cm?1 and a set of upper state constants were obtained for the ν3 band of CH2D2. Although a slight perturbation was noticed in the ν3 band, all wavenumbers have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

11.
ABSTRACT

In recent years, photoexcited molecular triplet states became increasingly popular in magnetic resonance, e.g. as spin probes to measure distances relative to other electron-paramagnetic species or as moieties that transfer light-generated electron–spin polarisation of the triplet state to surrounding magnetic nuclei. In this study, the triplet states of three commercially available dyes, Erythrosin B, Rose Bengal and Atto Thio 12, all typically utilised as fluorophores in optical spectroscopies and microscopies, are investigated in aqueous solutions by using transient absorption spectroscopy and transient electron paramagnetic resonance (EPR). From these methods, the triplet-state lifetimes as well as their zero-field splitting parameters, D and E, which reflect the electronic structures of the triplet state wavefunctions, were obtained. Atto Thio 12 exhibits much smaller D and E values as compared to Rose Bengal and Erythrosin B. On the basis of density functional theory calculations of the triplets’ energy splittings at zero magnetic field, these findings were rationalised. As a proof of concept for applications, the triplet-state properties of Atto Thio 12 bound to an aptamer were also determined and the results are discussed.  相似文献   

12.
The ν2 band of CH3CD3 has been measured under an effective resolution of 0.04 cm?1. About 400 transitions observed in the region from 2130 to 2060 cm?1 have been identified as due to the ν2 fundamental band. The least-squares analysis of these transitions yields the band constants: ν0 = 2089.957, B′ = 0.548937, DJ = 6.97 × 10?7, DJK = 1.92 × 10?6, A′ - A″ = ?0.01158, and DK - DK = 1.30 × 10?6 cm?1. The ground-state constants B″, DJ, and DJK are fixed to the values obtained from microwave spectroscopy.  相似文献   

13.
The parallel band ν6(A2) of C3D6 near 2336 cm?1 has been studied with high resolution (Δν = 0.020 – 0.024 cm?1) in the infrared. The band has been analyzed using standard techniques and the following parameters have been determined: B″ = 0.461388(20) cm?1, DJ = 3.83(17) × 10?7 cm?1, ν0 = 2336.764(2) cm?1, αB = (B″ ? B′) = 8.823(12) × 10?4 cm?1, βJ = (DJ ? DJ) = 0, and αC = (C″ ? C′) = 4.5(5) × 10?4 cm?1.  相似文献   

14.
Single-crystal W-band (95 GHz) electron paramagnetic resonance (EPR) studies have been performed at 20 K and at room temperature on a tetragonal Mn(III) compound with potential application as a building block for high-spin clusters. The observed EPR spectra correspond to an anisotropic high-spinS = 2 ground state and have been attributed to equivalent centers related by four-fold symmetry. Accurate values for the spin Hamiltonian parameters were obtained from the analysis of the data at both temperatures. At 20 K the contribution of fourth-order zero-field splitting terms was shown to be significant, with parameter values B 4 0 = 0.0009(3) cm?1, B 4 2 = 0.0006(2) cm?1 and B 4 4 = 0.0017(3) cm?1, to be considered together with the second-order parametersD = ?1.1677(7) cm?1 andE= ?0.0135(6) cm?1.  相似文献   

15.
Heterodyne frequency measurements have been made on selected deuterium bromide 1-0 band transitions ranging from P(20) to R(17). Difference frequency beat notes between a tunablediode laser whose frequency was locked to the DBr absorption lines and a CO laser whose frequency was either locked or adjusted to a reference synthesized from CO2 laser frequency standards were measured. The beat note frequency was then combined with the measured CO laser frequency to give the DBr frequency. For two of the measurements, frequency-doubled CO2 laser radiation was substituted for the CO laser radiation. The measurements included electric quadrupole split triplets comprising the R(0) and P(1) transitions in the D79Br isotope. New DBr constants have been determined, and a table of frequencies is presented for the calibration of spectrometers and tunable lasers in the wavenumber range 1600 to 1990 cm?1. A table of far-infrared frequencies is also given for DBr covering the range from 50 to 206 cm?1.  相似文献   

16.
The infrared spectrum of ν2 of D2S was recorded from 740 to 1100 cm?1 on the University of Denver 50-cm FTIR spectrometer system. We have assigned 655 transitions from D232S and 129 from D234S, and have analyzed them using Watson's A-reduced Hamiltonian evaluated in the Ir representation. We used the recently published D232S and D234S ground state Hamiltonian constants [C. Camy-Peyret, J. M. Flaud, L. Lechuga-Fossat and J. W. C. Johns, J. Mol. Spectrosc.109, 300–333 (1985)]. Upper state Hamiltonian constants were obtained from a fit of the ν2 transitions, keeping the ground state constants fixed while varying the upper state constants. The standard deviation of the D232S ν2 fit is 0.0025 cm?1. The standard deviation of the D234S ν2 fit is 0.0041 cm?1.  相似文献   

17.
Electron paramagnetic resonance measurements in single crystals of NiSiF6. 6D2O were made at K, Ku and Ka bands at 4.2 K and between 77 K and 300 K. The measured g values were in the range 2.23–2.26, while the zero-field splitting parameter D varied from ?(0.185 ± 0.005) cm?1 at 4.2 K to ?(0.53 ± 0.01) cm?1 at 298 K. The parameters of the trimolecular hexagonal unit cell were determined to be approximately a = 9.28 Å, c = 9.58 Å from powder X-ray diffraction measurements at room temperature.  相似文献   

18.
We estimate the numerical contribution of the interaction between like defects in glasses for the linewidth (? T?12) obtained in acoustical experiments. This interaction gives origin to a diffusion process with a very large diffusion constant (D = 10?5 cm2 sec?1). The thermal conductivity due to this diffusion process is calculated. Its temperature dependence is also obtained.  相似文献   

19.
The diffusion of 1H and 2H on the (111) plane of a W field emitter has been studied by the fluctuation method at various coverages. Both activated and unactivated diffusion is observed; the latter shows very little isotope effect, suggesting that coupling to the substrate is so strong that mass renormalization makes the effective masses of 1H and 2H nearly identical. Values of D in the tunneling, i.e. temperature independent, regime are 10?13?5 × 10?14 cm2/s depending on coverage. For activated diffusion at high coverages, corresponding to population of the β1 state E = 2.4?3.2 kcal/mol and D0 = 2 × 10?8 ?5 × 10?7 cm2/s, depending on coverage. For lower coverages, corresponding to β2 population, E = 7–9 kcal/mol, D0 = 9 × 10?6 ?2 × 10?3 cm2/s, again depending on coverage. Similar values are obtained for 2H, with E and D0 values slightly reduced. An exponentially decaying correlation signal for clean W was also seen and interpreted in terms of flip-flop of W atoms.  相似文献   

20.
The (ONOO)? anion, known as peroxynitrite, is characterized by a singlet spin state. A new stable dimer form of peroxynitrite [NO-O2]? in the triplet state at distances close to r(O-N) ≈ 2.885 Å between oxygen in the O2 structure and nitrogen has been established within the quantum-chemical CASSCF approximation. The vibrational motion of the dimer is significantly anharmonic; for the 16O and 14N isotopes, the differences in the energies of two neighboring levels correspond to frequencies of about 70–30 cm?1. The triplet dimer structure retains stability in the case of interaction with water molecules. The activation barriers caused by rearrangement of the peroxynitrite structure into the ground state of the NO 3 ? anion with the symmetry D 3h are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号