首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein folding has emerged as a central problem in biophysics, and the equilibrium folding mechanism of cytochrome c (cyt c) has served as a model system. Unfortunately, the detailed characterization of both the folding process and of any intermediate that might be populated has been limited by the low structural and/or temporal resolution of the available techniques. Here, we report the use of a recently developed technique to study folding that is based on the site-selective incorporation of carbon-deuterium (C-D) bonds and their characterization by IR spectroscopy. Specifically, we synthesize and characterize the protein with deuterated residues spread throughout four structural motifs: (d3)Leu68 in the 60's helix, (d8)Lys72 and (d8)Lys73 in the 70's helix, (d8)Lys79, (d3)Met80, and (d3)Ala83 in the D-loop, and (d3)Leu94, (d3)Leu98, and (d3)Ala101 in the C-terminal helix. The data reveal correlated behavior of the residues within each structural motif, as well as between the residues of the 60's and C-terminal helices and between residues of the 70's helix and D-loop. Residues of the 70's helix and the D-loop are more stable than those within the 60's and C-terminal helices, although the former are more sensitive to added denaturant. The data also suggest that the hydrophobicity of the heme cofactor plays a central role in folding. These results contrast with those from previous H/D exchange studies and suggest that the low denaturant fluctuations observed in the H/D exchange experiments are not similar to those through which the protein actually unfolds. The inherently fast time scale of IR also allows us to characterize the folding intermediate, long thought to be present, but which has proven difficult to characterize by other techniques.  相似文献   

2.
We determined the activation volume associated with protein folding of reduced cytochrome c from the collapsed intermediate to the native state. The folding rate was followed by a change in the absorption (420 nm) at various pressures between 0.1 and 200 MPa and at various concentrations of denaturant (guanidine hydrochloride) between 3.2 and 4.0 M. Dependence of the folding rate on both these factors revealed that the activation volume at ambient pressure in the absence of denaturant is negative (DeltaVf0 = -14 (+/-8) cm3.mol-1). Such a negative activation volume can be accounted for by a decrease in volume resulting from the dehydration of hydrophobic groups, primarily the heme group. Dehydration, which increases the entropy of the protein system, compensates for a decrease in the entropy accompanying the formation of the more compact and ordered transition state. We, therefore, propose that the positive change in the activation entropy for the folding reaction is due to the dehydration of hydrophobic groups. Furthermore, dehydration entropically promotes the protein folding reaction.  相似文献   

3.
The FK506-FKBP12 binding-domain of the kinase FRAP (FRB) forms a classic up-down four-helical bundle. The folding pathway of this protein has been investigated using a combination of equilibrium and kinetic studies. The native state of the protein is stable with respect to the unfolded state by some 7 kcal mol(-1) at pH 6.0, 10 degrees C. A kinetic analysis of unfolding and refolding rate constants as a function of chemical denaturant concentration suggests that an intermediate state may be populated during folding at low concentrations of denaturant. The presence of this intermediate state is confirmed by refolding experiments performed in the presence of the hydrophobic dye 8-anilinonaphthalene-1 sulfonate (ANS). ANS binds to the partially folded intermediate state populated during the folding of FRB and undergoes a large change in fluorescence that can be detected using stopped-flow techniques. Analysis of the kinetic data suggests that the intermediate state is compact and it may even be a misfolded species that has to partially unfold before it can reach the transition state. Folding and unfolding rate constants in water are approximately 150-200 s(-1) and 0.005-0.06 s(-1), respectively, at neutral pH and 10 degrees C. The folding of FRB is somewhat slower than for other all-helical proteins, probably as a consequence of the formation of a metastable intermediate state. The folding rate constant in the absence of any populated intermediate can be estimated to be 8800 s(-1). Despite the presence of an intermediate state, which effectively slows folding, the protein still folds rapidly with a half-life of 5 ms at 10 degrees C. The dependence of the rate constants on denaturant concentration indicates that the transition state for folding is compact with some 80% of the surface area exposed in the unfolded state buried in the transition state. Data presented for FRB is compared with kinetic data obtained for other all-helical proteins.  相似文献   

4.
Pulse radiolysis is a powerful method to realize real-time observation of various redox processes, which induces various structural and functional changes occurring in biological systems. However, its application has been mainly limited to studies of the redox reactions of rather smaller biological systems such as DNA because of an undesired reaction due to various free radicals generated by pulse radiolysis. For application of pulse radiolysis to generate plenty of redox reactions of biological systems, selective redox reactions induced by electron pulses have to be developed. In this study, we report that in the presence of the high concentration of the denaturant, guanidine HCl (GdHCl), the selective reduction of the oxidized cytochrome c (Cyt c) takes place in time scales of a few microseconds by the electron transfer from the guanidine radical that is formed by the fast reaction of e(aq)(-) with GdHCl, consequently leading to folding kinetics of Cyt c. By providing insight into the folding dynamics of Cyt c, we show that the pulse radiolysis technique can be used to track the folding dynamics of various biomolecules in the presence of a denaturant including GdHCl.  相似文献   

5.
The solution to the riddle of how a protein folds is encoded in the conformational energy landscape for the constituent polypeptide. Employing fluorescence energy transfer kinetics, we have mapped the S.cerevisiae iso-1 cytochrome c landscape by monitoring the distance between a C-terminal fluorophore and the heme during folding. Within 1 ms after denaturant dilution to native conditions, unfolded protein molecules have evolved into two distinct and rapidly equilibrating populations: a collection of collapsed structures with an average fluorophore-heme distance (r) of 27 A and a roughly equal population of extended polypeptides with r > 50 A. Molecules with the native fold appear on a time scale regulated by heme ligation events ( approximately 300 ms, pH 7). The experimentally derived landscape for folding has a narrow central funnel with a flat upper rim on which collapsed and extended polypeptides interchange rapidly in a search for the native structure.  相似文献   

6.
Free-solution capillary zone electrophoresis (CZE) can be used to monitor folding/unfolding transitions of proteins and to construct the classical sigmoidal transition curve describing this isomerization process. By performing a series of CZE experiments along the pH scale (here between pH 2.5 and 6.0) it is possible to measure the parameter [urea]1/2, which represents the concentration of urea at the midpoint of each transition curve, and its dependence from the local pH value. The [urea]1/2 parameter provides an idea of the stability of the protein at a given pH; in the case of cytochrome c, for example, it shows that at and below pH 2 the protein will spontaneously unfold even in the absence of a denaturant. The equation describing the sigmoidal folding/unfolding transition can be used for deriving the term deltaG degrees, which refers to the intrinsic difference in the Gibb's free energy between the (total or partial) denatured state and the reference state, taken usually as the native configuration of a protein. The variation of deltaG degrees between the two extremes of our measurements (pH 2.5 and 6.0) along the stated pH interval has been measured (and theoretically calculated) to be of the order of 7-10 kcal/mol and is here interpreted by assuming that at pH 2.5 and below there is an additionally stretching of the polypeptide coil due to coulombic repulsion, as the unfolded chain looses its zwitterionic character and assumes a pure (or very nearly so) cationic surface. Given the minute amounts of sample required, the fully automated state of the analysis, the rapidity and ease of operation, it is hoped that the CZE technique will become more and more popular in the years to come for monitoring folding/unfolding transitions of proteins.  相似文献   

7.
Chemical and thermal denaturation methods have been widely used to investigate folding processes of proteins in vitro. However, a molecular understanding of the relationship between these two perturbation methods is lacking. Here, we combined computational and experimental approaches to investigate denaturing effects on three structurally different proteins. We derived a linear relationship between thermal denaturation at temperature T(b) and chemical denaturation at another temperature T(u) using the stability change of a protein (ΔG). For this, we related the dependence of ΔG on temperature, in the Gibbs-Helmholtz equation, to that of ΔG on urea concentration in the linear extrapolation method, assuming that there is a temperature pair from the urea (T(u)) and the aqueous (T(b)) ensembles that produces the same protein structures. We tested this relationship on apoazurin, cytochrome c, and apoflavodoxin using coarse-grained molecular simulations. We found a linear correlation between the temperature for a particular structural ensemble in the absence of urea, T(b), and the temperature of the same structural ensemble at a specific urea concentration, T(u). The in silico results agreed with in vitro far-UV circular dichroism data on apoazurin and cytochrome c. We conclude that chemical and thermal unfolding processes correlate in terms of thermodynamics and structural ensembles at most conditions; however, deviations were found at high concentrations of denaturant.  相似文献   

8.
Cytochrome c functions as an electron carrier in the mitochondrial electron-transport chain using the Fe(II)-Fe(III) redox couple of a covalently attached heme prosthetic group, and it has served as a paradigm for both biological redox activity and protein folding. On the basis of a wide variety of biophysical techniques, it has been suggested that the protein is more flexible in the oxidized state than in the reduced state, which has led to speculation that it is the dynamics of the protein that has been evolved to control the cofactor's redox properties. To test this hypothesis, we incorporated carbon-deuterium bonds throughout cytochrome c and characterized their absorption frequencies and line widths using IR spectroscopy. The absorption frequencies of several residues on the proximal side of the heme show redox-dependent changes, but none show changes in line width, implying that the flexibility of the oxidized and reduced proteins is not different. However, the spectra demonstrate that folded protein is in equilibrium with a surprisingly large amount of locally unfolded protein, which increases with oxidation for residues localized to the proximal side of the heme. The data suggest that while the oxidized protein is not more flexible than the reduced protein, it is more locally unfolded. Local unfolding of cytochrome c might be one mechanism whereby the protein evolved to control electron transfer.  相似文献   

9.
The anionic surfactant sodium n-dodecyl sulfate (SDS) plays a variety of roles with regard to protein conformation, depending on its concentration. SDS at low concentrations mostly induces the compaction of protein (folding). Examples of this include: the molten globule state of acid-unfolded cytochrome c, associated with enhancement of the exothermic enthalpy values of isothermal titration calorimetry and a reversible profile by differential scanning calorimetry; the enzyme activation and compaction of Aspergillus niger catalase, and relationship of calorimetric enthalpy (ΔHcal) to van’t Hoff enthalpy (ΔHVH), which proves the existence of intermolecular and intramolecular interaction during enzyme activation by SDS; the production of a new energetic domain for human apotransferrin and folded state for histone H1 by SDS. SDS at moderate concentrations below the critical micelle concentration (cmc) is a potent denaturant for protein in solution. Protein denaturation is a key method in thermodynamics and binding site analysis and can be used to enhance our understanding of the protein structure-function relationship. The interaction between protein and surfactant, such as SDS, at the cmc level is a complicated interaction, thermodynamically, that should bring about enthalpy correction through micellar dissociation and micelle dilution.  相似文献   

10.
Described here is the impact of so-called non-EX2 exchange behavior on the accuracy of protein unfolding free energies (i.e., DeltaG u values) and m values (i.e.,-deltaDeltaG u/delta[denaturant] values) determined by an H/D exchange and mass spectrometry-based technique termed stability of unpurified proteins from rates of H/D exchange (SUPREX). Both experimental and theoretical results on a model protein, ubiquitin, reveal that reasonably accurate thermodynamic parameters for its folding reaction can be determined by SUPREX even when H/D exchange data is collected in a non-EX2 regime. Not surprisingly, the theoretical results reported here on a series of hypothetical protein systems with a wide range of biophysical properties show that the accuracy of SUPREX-derived DeltaG u and m values is compromised for many proteins when analyses are performed at high pH (e.g., pH 9) and for selected proteins with specific biophysical parameters (e.g., slow folding rates) when analyses are performed at lower pH. Of more significance is that the experimental and theoretical results reveal a means by which problems with non-EX2 exchange behavior can be detected in the SUPREX experiment without prior knowledge of the protein's biophysical properties. The results of this work also reveal that such problems with non-EX2 exchange behavior can generally be minimized if appropriate H/D exchange times are employed in the SUPREX experiment to yield SUPREX curve transition midpoints at chemical denaturant concentrations less than 2 M.  相似文献   

11.
The cold shock protein CspB adopts its native and functional tertiary structure on the millisecond time scale. We employed transverse relaxation NMR methods, which allow a quantitative measurement of the cooperativity of this fast folding reaction on a residue basis. Thereby, chemical exchange contributions to the transverse relaxation rate (R(2)) were observed for every residue of CspB verifying the potential of this method to identify not only local dynamics but also to characterize global events. Toward this end, the homogeneity of the transition state of folding was probed by comparing Chevron plots (i.e., dependence of the apparent folding rate on the denaturant concentration) determined by stopped-flow fluorescence with Chevron plots of six residues acquired by R(2) dispersion experiments. The coinciding results obtained for probes at different locations in the three-dimensional structure of CspB indicate the ability and significance of transverse relaxation NMR to determine Chevron plots on a residue-by-residue basis providing detailed insights on the nature of the transition state of folding.  相似文献   

12.
All ultrafast folding proteins known to date are either very small in size (less than 45 residues), have an alpha-helix bundle topology, or have been artificially engineered. In fact, many of them share two or even all three features. Here we show that gpW, a natural 62-residue alpha+beta protein expected to fold slowly in a two-state fashion, folds in microseconds (i.e., from tau = 33 micros at 310 K to tau = 1.7 micros at 355 K). Thermodynamic analyses of gpW reveal probe dependent thermal denaturation, complex coupling between two denaturing agents, and differential scanning calorimetry (DSC) thermogram characteristic of folding over a negligible thermodynamic folding barrier. The free energy surface analysis of gpW folding kinetics also produces a marginal folding barrier of about thermal energy ( RT) at the denaturation midpoint. From these results we conclude that gpW folds in the downhill regime and is close to the global downhill limit. This protein seems to be poised toward downhill folding by a loosely packed hydrophobic core with low aromatic content, large stabilizing contributions from local interactions, and abundance of positive charges on the native surface. These special features, together with a complex functional role in bacteriophage lambda assembly, suggest that gpW has been engineered to fold downhill by natural selection.  相似文献   

13.
Bren KL  Kellogg JA  Kaur R  Wen X 《Inorganic chemistry》2004,43(25):7934-7944
NMR spectroscopy has become a vital tool for studies of protein conformational changes and dynamics. Oxidized Fe(III)cytochromes c are a particularly attractive target for NMR analysis because their paramagnetism (S = (1)/(2)) leads to high (1)H chemical shift dispersion, even for unfolded or otherwise disordered states. In addition, analysis of shifts induced by the hyperfine interaction reveals details of the structure of the heme and its ligands for native and nonnative protein conformational states. The use of NMR spectroscopy to investigate the folding and dynamics of paramagnetic cytochromes c is reviewed here. Studies of nonnative conformations formed by denaturation and by anomalous in vivo maturation (heme attachment) are facilitated by the paramagnetic, low-spin nature of native and nonnative forms of cytochromes c. Investigation of the dynamics of folded cytochromes c also are aided by their paramagnetism. As an example of this analysis, the expression in Escherichia coli of cytochrome c(552) from Nitrosomonas europaea is reported here, along with analysis of its unusual heme hyperfine shifts. The results are suggestive of heme axial methionine fluxion in N. europaea ferricytochrome c(552). The application of NMR spectroscopy to investigate paramagnetic cytochrome c folding and dynamics has advanced our understanding of the structure and dynamics of both native and nonnative states of heme proteins.  相似文献   

14.
Protein folding is important for protein homeostasis/proteostasis in the human body. We have established the ability to manipulate protein unfolding/refolding for β-lactoglobulin using the induced mechanical energy in the thin film microfluidic vortex fluidic device (VFD) with monitoring as such using an aggregation-induced emission luminogen (AIEgen), TPE-MI. When denaturant (guanidine hydrochloride) is present with β-lactoglobulin, the VFD accelerates the denaturation reaction in a controlled way. Conversely, rapid renaturation of the unfolded protein occurs in the VFD in the absence of the denaturant. The novel TPE-MI reacts with exposed cysteine thiol when the protein unfolds, as established with an increase in fluorescence intensity. TPE-MI provides an easy and accurate way to monitor the protein folding, with comparable results established using conventional circular dichroism. The controlled VFD-mediated protein folding coupled with in situ bioprobe AIEgen monitoring is a viable methodology for studying the denaturing of proteins.  相似文献   

15.
This paper presents a Langevin dynamics simulation that suggests a novel way to fold protein at high concentration, a fundamental issue in neurodegenerative diseases in vivo and the production of recombinant proteins in vitro. The simulation indicates that the folding of a coarse-grained beta-barrel protein at high concentration follows the "collapse-rearrangement" mechanism but it yields products of various forms, including single proteins in the native, misfolded, and uncollapsed forms and protein aggregates. Misfolded and uncollapased proteins are the "nucleus" of the aggregates that also encapsulate some correctly folded proteins (native proteins). An optimum hydrophobic interaction strength (epsilon*(p)) between the hydrophobic beads of the model protein, which results from a compromise between the kinetics of collapse and rearrangement, is identified for use in increasing the rate of folding over aggregating. Increased protein concentration hinders the structural transitions in both collapse and rearrangement and thus favors aggregation. A new method for protein folding at high concentration is proposed, which uses an oscillatory molecular driving force (epsilon*(p)) to promote the dissociation of aggregates in the low epsilon*(p) regime while promoting folding at a high epsilon*(p). The advantage of this method in enhancing protein folding while depressing aggregation is illustrated by a comparison with the methods based on direct dilution or applying a denaturant gradient.  相似文献   

16.
The folding dynamics of reduced cytochrome c (redcyt c) obtained from tuna heart, which contains a tryptophan residue at the site occupied by His33 in horse heart cytochrome c, was studied using nanosecond time-resolved optical rotatory dispersion spectroscopy. As observed previously for horse heart redcyt c, two time regimes were observed for secondary structure formation in tuna redcyt c: a fast (microseconds) and a slow (milliseconds) phase. However, the fast phase of tuna redcyt c folding was much slower and smaller in amplitude than the same phase in horse. The differences in the fast folding phases suggest that for horse heart redcyt c, the conformers that undergo the fastest observed folding have the His18-Fe-His33 heme configuration, which appears to be necessary, but not sufficient, to poise an unfolded chain conformation for fastest folding in redcyt c.  相似文献   

17.
IntroductionMicrosomalcytochromeb5(Cytb5)isamemberofcytochromeb5family ,anditservesasanelectroncarrierinaseriesofelectron transferprocessesinbiologicalsys tems .1 3 Cytb5isamembraneproteinwithMr~ 16kDa ,consistingoftwodomains ,onehydrophobicdomainwhichanchorsth…  相似文献   

18.
Recently, the authors proposed a kinetic model for the nucleation mechanism of protein folding where a protein was treated as a heteropolymer with all the bonds and bond angles equal and constant. As a crucial idea of the model, an overall potential around a cluster of native residues in which a protein residue performs a chaotic motion is considered to be a combination of three potentials: effective pairwise, average dihedral, and confining. The overall potential as a function of the distance from the cluster center has a double well shape which allows one to determine the rates with which the cluster emits and absorbs residues by using a first passage time analysis. One can then develop a kinetic theory for the nucleation mechanism of protein folding and evaluate the protein folding time. In the present paper we evaluate the optimal temperature at which the protein folding time is the shortest. A method is also proposed to determine the temperature dependence of the folding time without carrying out the time consuming calculations for a series of temperatures. Using Taylor series expansions in the formalism of the first passage time analysis, one can calculate the temperature dependence of the cluster emission and absorption rates in the vicinity of some temperature T(0) if they are known at T(0). Thus one can evaluate the protein folding time t(f) at any other temperature T in the vicinity of T(0) at which the folding time t(f) is known. We also present a model for the thermal denaturation of a protein occurring via the decay of the native structure of the protein. Due to a sufficiently large temperature increase or decrease, the rate with which a cluster of native residues within a protein emits residues becomes larger than the absorption rate in the whole range of cluster sizes up to the size of the whole protein. This leads to the unfolding of the protein in a barrierless way, i.e., as spinodal decomposition. Knowing the cluster emission and absorption rates as functions of temperature and cluster size, one can find the threshold temperatures of cold and hot barrierless denaturation as well as the corresponding unfolding times. Both proposed methods are illustrated by numerical calculations for two model proteins, one consisting of 124 amino acids, the other consisting of 2500 residues. The first one roughly mimicks a bovine pancreatic ribonuclease while the second one is a representative of the largest proteins which are extremely difficult to study by straightforward Monte Carlo or molecular dynamics simulations.  相似文献   

19.
Protein charge-state distributions (CSDs) in electrospray-ionization mass spectrometry (ESI-MS) represent a sensitive tool to probe different conformational states. We describe here the effect of trifluoroethanol (TFE) on cytochrome c equilibrium unfolding at different pH by nano-ESI-MS. While even low concentrations of TFE destabilize the protein native structure at low pH, a TFE content of 2.5%-5% is found to favor cyt c folding at pH approximately 7. Furthermore, we perform comparison of CSDs obtained by time-of-flight (ToF) and Fourier-transform-ion- cyclotron-resonance (FT-ICR) mass analyzers. To this purpose, we analyze spectra of cyt c in the presence of different kind of denaturants. In particular, experiments with 1-propanol suggest that also by FT-ICR-MS, as previously observed on an ESI-ToF instrument, CSDs do not appear to be controlled by the solvent surface tension as predicted by the Rayleigh-charge model. Moreover, there is general good agreement in conformational effects revealed by the different instruments under several buffer conditions. Nevertheless, the ToF instrument appears to discriminate better between unfolded and partially unfolded forms.  相似文献   

20.
Using a ternary nucleation formalism, we have recently [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 126, 175103 (2007)] proposed a kinetic model for the nucleation mechanism of protein folding. A protein was considered as a heteropolymer consisting of hydrophobic, hydrophilic, and neutral beads with all the bonds having the same constant length and all the bond angles equal and fixed. In this paper, we further develop that model by taking into account of the ionizability of some of the protein residues. As previously, an overall potential around the cluster wherein a protein residue performs a chaotic motion is considered to be a combination of the average dihedral and average pairwise potentials (the latter now including an electrostatic contribution for ionized residues) assigned to the residue and the confining potential due to the polymer connectivity constraint. The overall potential as a function of the distance from the cluster has a double well shape (even for ionized beads) which allows one to determine the rates of emission and absorption of residues by the cluster by using a first passage time analysis. Assuming the equality of the ratios of the numbers of negatively and positively ionized residues in the cluster and in the entire protein, one can keep the modified model within the framework of the ternary nucleation formalism and evaluate the size and composition of the nucleus and the protein folding time as in the previous model. As an illustration, the model is again applied to the folding of bovine pancreatic ribonuclease consisting of 124 amino acids, whereof 40 are hydrophobic, 81 hydrophilic (of which 10 are negatively and 18 positively ionizable), and 3 neutral. Numerical calculations at pH=6.3, pH=7.3, and pH=8.3 show that for this protein the time of folding via nucleation is significantly affected by electrostatic interactions only for the unusually low pH of 6.3 and that among all pH's considered pH=7.3 provides the lowest folding time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号