首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The reaction of [Mn6O2(Piv)(10)(4-Me-py)(2.5)(PivH)(1.5)] (1) (py: pyridine, Piv: pivilate) with N-methyldiethanolamine (mdeaH2) and Ln(NO3)3 x 6 H2O in MeCN leads to a series of nonanuclear compounds [Mn5Ln4(O)6(mdea)2(mdeaH)2(Piv)6(NO3)4(H2O)2]2 MeCN (Ln=Tb(III) (2), Dy(III) (3), Ho(III) (4), Y(III) (5)). Single-crystal X-ray diffraction shows that compounds 2-5 are isostructural, with the central core composed of two distorted {Mn(IV)Mn(III)Ln2O4} cubanes sharing a Mn(IV) vertex, representing a new heterometallic 3d-4f motif for this class of ligand. The four new compounds display single-molecule magnet (SMM) behaviour, which is modulated by the lanthanide ion used. Moreover, the values found for Delta(eff) and tau(o) for 3 of 38.6 K and 3.0 x 10(-9) s respectively reveal that the complex 3 exhibits the highest energy barrier recorded so far for 3d-4f SMMs. The slow relaxation of the magnetisation for 3 was confirmed by mu-SQUID measurements on an oriented single crystal and the observation of M versus H hysteresis loops below 1.9 K.  相似文献   

4.
5.
6.
7.
8.
The title dodecanuclear Mn complex, namely dodeca‐μ2‐acetato‐κ24O:O′‐tetraaquatetra‐μ2‐nitrato‐κ8O:O′‐tetra‐μ4‐oxido‐octa‐μ3‐oxido‐tetramanganese(IV)octamanganese(III) nitromethane tetrasolvate, [Mn12(CH3COO)12(NO3)4O12(H2O)4]·4CH3NO2, was synthesized by the reaction of Mn2+ and Ce4+ sources in nitromethane with an excess of acetic acid. This compound is distinct from the previously known single‐molecule magnet [Mn12O12(O2CMe)16(H2O)4], synthesized by Lis [Acta Cryst. (1980), B 36 , 2042–2044]. It is the first Mn12‐type molecule containing nitrate ligands to be directly synthesized without the use of a preformed cluster. Additionally, this molecule is distinct from all other known Mn12 complexes due to intermolecular hydrogen bonds between the nitrate and water ligands, which give rise to a three‐dimensional network. The complex is compared to other known Mn12 molecules in terms of its structural parameters and symmetry.  相似文献   

9.
10.
11.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

12.
13.
14.
Two nanosized Mn49 and Mn25Na4 clusters based on analogues of the high‐spin (S=22) [MnIII6MnII44‐O)4]18+ supertetrahedral core are reported. Mn49 and Mn25Na4 complexes consist of eight and four decametallic supertetrahedral subunits, respectively, display high virtual symmetry (Oh), and are unique examples of clusters based on a large number of tightly linked high nuclearity magnetic units. The complexes also have large spin ground‐state values (Mn49: S=61/2; Mn25Na4: S=51/2) with the Mn49 cluster displaying single‐molecule magnet (SMM) behavior and being the second largest reported homometallic SMM.  相似文献   

15.
16.
17.
18.
19.
20.
In the cone conformation calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition-metal centres. Reaction of these molecules with manganese salts in the presence of an appropriate base (and in some cases co-ligand) results in the formation of a family of calixarene-supported [Mn(III)(2)Mn(II)(2)] clusters that behave as single-molecule magnets (SMMs). Variation in the alkyl groups present at the upper-rim of the cone allows for the expression of a degree of control over the self-assembly of these SMM building blocks, whilst retaining the general magnetic properties. The presence of various different ligands around the periphery of the magnetic core has some effect over the extended self-assembly of these SMMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号