首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of polymers with magnetic particles displays novel and often enhanced properties compared to the traditional materials. They can open up possibilities for new technological applications. The magnetic field sensitive elastomers represent a new type of composites consisting of small particles, usually from nanometer range to micron range, dispersed in a highly elastic polymeric matrix. In this paper, we show that in the presence of built‐in magnetic particles it is possible to tune the elastic modulus by an external magnetic field. We propose a phenomenological equation to describe the effect of the external magnetic field on the elastic modulus. We demonstrate the engineering potential of new materials on the examples of two devices. The first one is a new type of seals fundamentally different from those used before. In the simplest case, the sealing assembly includes a magnetoelastic strip and a permanent magnet. They attract due to the magnetic forces. This ensures that due to high elasticity of the proposed composites and good adhesion properties, the strip of magnetoelastic will adopt the shape of the surface to be sealed, this fact leading to an excellent sealing. Another straightforward application of the magnetic composites is based on their magnetic field dependent elastic modulus. Namely, we demonstrate in this paper the possible application of these materials as adjustable vibration dampers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The new generation of magnetic elastomers represents a new type of composites, consisting of small (mainly nano and micron‐sized) magnetic particles dispersed in a highly elastic polymeric matrix. The combination of polymers with magnetic materials displays novel and often enhanced properties. Highly elastic magnetic composites are quite new and understanding of the behavior of these materials depending on the composition, external conditions, and the synthesis processes is still missing. Thus, the aim of this work is the study of fundamental principles governing the preparation of these materials as well as their structure and elastic properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this study 3D collagen materials with magnetic properties were prepared by lyophilization technique. Magnetic particles were synthesized by precipitation of iron (II) sulfate heptahydrate and iron (III) chloride hexahydrate in an aqueous solution of chitosan and then added to a collagen solution. Starch dialdehyde (DAS) was used as a cross-linking agent for the materials. The properties of the obtained materials were studied using infrared spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, mechanical properties, porosity, density, swelling and moisture content were measured.It was found that 3D composites made from collagen with magnetic particles are hydrophilic with a high swelling ability. Cross-linking of such collagen materials with dialdehyde starch (DAS) alters the swelling degree, porosity and density of materials. The addition of magnetic particles to collagen materials decreases its porosity, and increases the density of the studied materials. Collagen 3D materials with magnetic particles are rigid and inflexible. Magnetic properties of the 3D collagen materials containing magnetic particles were confirmed by the interaction of this material with a magnet.  相似文献   

4.
The combination of polymers with nanomaterials displays novel and often enhanced properties compared to the traditional materials. They can open up possibilities for new technological applications. The magnetic polymer gel represents a new type of composites consisting of small magnetic particles, usually from the nanometer range to the micron range, dispersed in a highly elastic polymeric gel matrix. Combination of magnetic and elastic properties leads to a number of striking phenomena that are exhibited in response to impressed magnetic fields. Giant deformational effects, high elasticity, anisotropic properties, temporary reinforcement and quick response to magnetic field open new opportunities for using such materials for various applications.  相似文献   

5.
《先进技术聚合物》2018,29(1):216-225
Rubber magnetic composites were prepared by incorporation of strontium ferrite into rubber compounds based on acrylonitrile butadiene rubber and ethylene propylene diene monomer rubber. The sulfur, peroxide, and mixed sulfur/peroxide curing systems were introduced as cross‐linking agents for rubber matrices. The aim was to investigate the influence of curing system composition on curing process and cross‐link density of composite materials. Then, static and dynamic mechanical properties and thermal and magnetic characteristics were investigated in relation to the cross‐link density of rubber magnetic composites and structure of the formed cross‐links. The changes of dynamical and physicomechanical properties were in close correlation with the change of cross‐link density, whereas the tensile strength of magnetic composites showed increasing trend with increasing amount of peroxide in mixed curing systems. On the other hand, thermal conductivity and magnetic characteristics were found not to be dependent on the curing system composition.  相似文献   

6.
In this study, flexible silk fibroin protein and biocompatible barium hexaferrite (BaM) nanoparticles were combined and electrospun into nanofibers, and their physical properties could be tuned through the mixing ratios and a water annealing process. Structural analysis indicates that the protein structure of the materials is fully controllable by the annealing process. The mechanical properties of the electrospun composites can be significantly improved by annealing, while the magnetic properties of barium hexaferrite are maintained in the composite. Notably, in the absence of a magnetic field, cell growth increased slightly with increasing BaM content. Application of an external magnetic field during in vitro cell biocompatibility study of the materials demonstrated significantly larger cell growth. We propose a mechanism to explain the effects of water annealing and magnetic field on cell growth. This study indicates that these composite electrospun fibers may be widely used in the biomedical field for controllable cell response through applying different external magnetic fields.  相似文献   

7.
Recent results in our group demonstrated that mixed oxidation state mesoporous niobium oxide cobaltocene composites display superparamagnetism at certain composition ratios. This was the first report of superparamagnetism in nanoscale molecular ensembles. A series of mesoporous niobium oxide materials were synthesized in order to understand the role of pore size and thickness of the walls in the mesostructure on the magnetic properties. Mesoporous Ti oxide and Ta oxide composites were also synthesized in order to investigate the effect of changing the wall composition on the magnetic properties of this new series of materials. All samples were characterized by X-ray diffraction, nitrogen adsorption, ultraviolet spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and superconducting quantum interference device magnetometry. The results of this study showed that variation of wall thickness or pore size in the Nb system had little effect on the properties and that superparamagnetism most likely arises from mixed oxidation state cobaltocene grains residing in the individual pores and not from the free electrons in the mesostructure or much larger domains. The Langevin function was applied to the isothermal magnetic data from the Nb composites and gave mean superparamagnetic particle sizes of ca. 14 nm in each system. The Co(II) to Co(III) ratios in these materials were approximately 1:1. The Ti and Ta materials showed no sign of superparamagnetism and only very low levels of neutral cobaltocene in the pores. This suggests that a critical amount of cobaltocene is required to bring about superparamagnetic behavior.  相似文献   

8.
The paper describes the synthesis and characterization of the magnetic properties of magnetite/silica nanocomposites using a modified Stober method. Magnetite nanoparticles averaging 8-10 nm in diameter and stabilized with oleic acid in toluene were used as the magnetic component of the nanocomposites. SQUID magnetic measurements and ferromagnetic resonance spectroscopy measurements were performed at each stage of the synthesis to understand the properties of the formed composites. Changes of blocking temperature in ZFC/FC SQUID curves correlated with corresponding changes of the resonance field in the ferromagnetic spectra of the sample at each stage of formation. The paper concludes that it is possible to manipulate the magnetic properties of silica/magnetite composite materials by controlling their surface properties and silica coating thickness.  相似文献   

9.
A new method of depositing an insulating multifunctional oxide coating on metal particles was developed. Such coatings increase corrosion resistance and insulate metal particles from each other. On base of capsulated by oxide coating water-atomized iron powder ASC100.29, new composite soft magnetic materials were synthesized, which are able of replacing electrical steel in devices. Structural, electromagnetic properties and corrosion characte-ristics of the obtained composites were studied. It was found that the synthesized composite materials have low electromagnetic losses, high values of magnetic induction(up to 2.1 T) and good corrosion resistance. The results demonstrate that the use of such materials in power supplies, chokes, transformers, stators and rotors of electric machines and other products ensures their stable operation under various conditions.  相似文献   

10.
The dielectric and magnetic properties of carbonyl—iron (CI) and nickel zinc ferrite polymer composites were studied with respect to the ferrite particulate content and microwave frequency. From the experimental data and using empirical models that relate the composite dielectric and magnetic properties, the respective dielectric and magnetic properties of the neat fillers were estimated. The tensile properties of the particulate composites comprising CI were shown to follow qualitatively Mooney's equation for the elastic modulus. The tensile strength of an elastomeric polyurethane and PVC composites containing CI increased with particulate content, while the elongation to break decreased with filler content. SEM micrographs of tensile fracture surfaces indicated that somewhat better adhesion is obtained in the case of the polyurethane-based composites compared to the PVC ones.  相似文献   

11.
The thermoresponsive magnetic polymer composites and nanofibers were fabricated. Their thermal and magnetic properties were also investigated. Fe3O4 nanoparticles were prepared by coprecipitation method. Further condensation reaction was used to fabricate the double‐layer lauric acid modified Fe3O4 (DLF) nanoparticles dispersed well in water. Thermal properties of poly(N‐isopropylacrylamide) (PNIPAAm) and DLF/PNIPAAm composites and their aqueous solutions were measured by TGA and DSC. With the increasing of DLF content, the interaction between DLF and PNIPAAm caused the lower critical solution temperature (LCST) of polymer solution to shift from 33 to 31.25 °C. The effects of concentration and pH on LCST were also studied. The DLF/PNIPAAm nanofibers were fabricated by electrospinning. Their diameters were around 100–250 nm. Magnetization curves of DLF/PNIPAAm composite and nanofibers were overlapped and the saturated magnetizations were the same. Magnetic attraction behaviors of DLF/PNIPAAm polymer solution at temperatures below and above LCST were different. Aggregation of DLF/PNIPAAm above LCST enhanced magnetic moment density as well as magnetic attraction ability. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 848–856  相似文献   

12.
用化学沉淀法和原位聚合法分别制备了Zn0.6Mn0.2Ni0.2Fe2O4铁氧体纳米粒子和Zn0.6Mn0.2Ni0.2Fe2O4铁氧体/聚邻甲基苯胺复合微粒(ZMNF/POT).通过现代测试技术表征了样品组成、结构、形貌和电-磁性能.结果表明,POT对ZMNF粒子具有较好的包覆作用;复合物电导率与POT的含量成正比,而磁性能与ZMNF粒子的含量相关;在1~15MHz频段内,POT和ZMNF/POT复合物的介电损耗与其电导率表现出一致性;复合物具有可观的磁损耗,比磁介质型ZMNF的大,且ZMNF含量为31.74 wt%的复合物的磁损耗最大,有望作为屏蔽和吸收电磁波材料获得应用.  相似文献   

13.
Rapid and efficient characterization and identification of pathogens at the strain level is of key importance for epidemiologic investigations, which still remains a challenge. In this work, solvothermically Fe3O4-COOH@MIL-101 composites were fabricated by in situ crystallization approach. The composites combine the excellent properties of both chromium (III) terephthalate (MIL-101) and carboxylic-functionalized magnetite (Fe3O4-COOH) particles and possess the efficient peptides/proteins enrichment properties and magnetic responsiveness. Fe3O4-COOH@MIL-101 composites as magnetic solid phase extraction materials were used to increase the discriminatory power of MALDI-TOF MS profiles. BSA tryptic peptides at a low concentration of 0.25 fmol μL−1 could be detected by MALDI-TOF MS. In addition, Fe3O4-COOH@MIL-101 composites were successfully applied in the selective enrichment of the protein biomarkers from bacterial cell lysates and discrimination of Escherichia coli at the strain level. This work provides the possibility for wide applications of magnetic MOFs to discriminate pathogens below the species level.  相似文献   

14.
The electrical and magnetic properties of the nanodiamond composites comprising nanodiamond, pyrolytic carbon, and nanosized pores were studied. The composites are p-type semiconductors and their resistance decreases by 12 orders of magnitude as the pyrocarbon-to-diamond ratio γ increases from 0 to 80 wt %. Evidence for paramagnetic properties of the nanodiamond composites was obtained. The observed properties are explained by increased concentration of surface Tamm states. The paramagnetic properties are explained in terms of the electron spins localized on the nanodiamond surface in the composite.  相似文献   

15.
The paper presents and summarizes some research on constant magnetic field effects in chemistry. Metals and alloys electrodeposited under constant magnetic field have greater thickness and smoother surface with finest grains. Metallic materials deposited under the influence of uniform magnetic field may have stronger corrosion resistance, than those obtained without the presence of magnetic field. Constant magnetic field also causes an increase of the electropolymerization rate and yield of some organic reactions. Our research also shows that the presence of constant magnetic field affects the electrodeposition process of alloys and their morphology to a great extent. The effects of magnetic field on metals, alloys, composites, polymers and other materials are due to the Lorentz force and the magnetohydrodynamic effect. It is possible that the further development of magnetoelectrodeposition will allow for using the constant magnetic field to improve the properties of metal coatings, alloys, polymers, and other materials in the industry.  相似文献   

16.
Alignment of multi-walled carbon nanotubes (MWCNTs) in a bulk epoxy matrix was studied using a magnetic-assisted method. In this study, the applicability of solenoid magnetic field was compared to that of static magnetic field, which has recently been published. It has been found that solenoid magnetic field is able to provide better alignment of MWCNTs due to the uniform magnetic field along the axis of solenoid. Remarkable improvements were achieved in the mechanical properties of aligned MWCNT-reinforced epoxy composites. Alignment of MWCNTs was clearly observed in all regions of the composites by scanning electron microscopy and transmission electron microscopy.  相似文献   

17.
The combination of magnetic nanoparticles with thermoresponsive polymer systems leads to the formation of hybrid particle dispersions or composites with a variety of interesting properties and perspectives, including instant dispensability, thermoreversible formation of magnetic fluids, and novel magnetoresponsive properties. Special interest is gained by the magnetic heatability of magnetic particles that allows the activation of thermal effects by the application of a high-frequency electromagnetic field. This review summarizes the recent developments in this young field of research with application potential for magnetic separation, drug release systems, and for sensor and actuator purposes.  相似文献   

18.
Ways to obtain Fe2O3–SiO2 iron-containing silica composites with organized mesoporous structure (MCM-41) and large specific surface area (up to 1476 m2 g–1) were considered. The influence exerted by the method used to synthesize the materials on their structure, texture characteristics, particle size, and magnetic properties were studied. The aggregative stability of samples was examined. It was shown that treatment of the resulting composites with compounds from the chlorosilane group affects their hydrophobic properties.  相似文献   

19.
利用溶剂热法通过控制反应时间和温度制得了分散性好和磁性强的Fe3O4,并利用溶胶凝胶法制备得到包覆SiO2的磁性微球(Fe3O4@SiO2)。以三聚氰胺为模板分子,甲基丙烯酸(MAA)为单体,采用本体聚合法制备了磁性分子印迹聚合物(MMIPs)。通过静态吸附实验表明,MMIPs对三聚氰胺的饱和吸附量高达10.22μg/mg,是磁性非印迹聚合物(MNIPs)的1.62倍。粒子扩散模型、Elovich模型和动态吸附实验表明所制得的MMIPs有较好的吸附性能。  相似文献   

20.
The decoration of CNTs surface by magnetic nanoparticles was achieved by an ultrasonication-assisted hydrothermal method (UAHM). The effect of ultrasonication time on the crystal structure, magnetic performance, and chemical composition of the magnetic CNT composite material was determined. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating sample magnetometry were used to characterize the physical, chemical, and magnetic properties of the composites. The composites synthesized via the UAHM exhibited superparamagnetic properties. The ultrasonication time was a critical factor that affected the structure and magnetic performance of the composites. By simply controlling the ultrasonication time, the crystal phase structure of Fe oxide could be selectively modulated and the magnetic performance of the MCs could be effectively tuned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号