首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (17)O and (1)H hyperfine interactions of water ligands in the Ti(III) aquo complex in a frozen solution were determined using Hyperfine Sublevel Correlation (HYSCORE) and Pulse Electron Nuclear Double Resonance (ENDOR) spectroscopies at 9.5 GHz. The isotropic hyperfine interaction (hfi) constant of the water ligand (17)O was found to be about 7.5 MHz. (1)H Single Matched Resonance Transfer (SMART) HYSCORE spectra allowed resolution of the hfi interactions of the two inequivalent water ligand protons and the relative orientations of their hfi tensors. The magnetic and geometrical parameters extracted from the experiments were compared with the results of DFT computations for different geometrical arrangements of the water ligands around the cation. The theoretical observable properties (g tensor (1)H and (17)O hfi tensors and their orientations) of the [Ti(H(2)O)(6)](3+) complex are in quantitative agreement with the experiments for two slightly different geometrical arrangements associated with D(3d) and C(i) symmetries.  相似文献   

2.
Fe(3+) ions in hexagonal and cubic fluoroelpasolite crystals (A(1)(2)B(I)M(III)F(6)) have been investigated in a combined Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) study. A detailed analysis of the ENDOR spectra for the nearest (19)F and (23)Na shells in X (9.5 GHz) and Q band (34 GHz) allowed the complex EPR spectra to be disentangled and to determine the spin Hamiltonian parameters for the various S = 5/2 Fe(3+) centres. W-band (95 GHz) EPR measurements as a function of temperature were performed to provide unambiguous evidence about the absolute signs of the Zero Field Splitting (ZFS) and SuperHyperFine (SHF) parameters for Fe(3+) in Cs(2)NaAlF(6) as already determined from the ENDOR work. It could be concluded that all principal (19)F hyperfine values were positive, in agreement with earlier assignments in the literature for related systems. A comparative analysis of the (19)F SHF data for Fe(3+) at a perfectly octahedral site in the cubic crystal, and at two slightly trigonally distorted environments in the hexagonal crystals, indicates that the metal-to-ligand distance changes upon doping. The obtained set of parameters concerning one defect in various analogous environments can furthermore be used to test different methods of theoretical calculations for ZFS and SHF values.  相似文献   

3.
FosA is a manganese metalloglutathione transferase that confers resistance to the broad-spectrum antibiotic fosfomycin, which contains a phosphonate group. The active site of this enzyme consists of a high-spin Mn(2+) ion coordinated by endogenous ligands (a glutamate and two histidine residues) and by exogenous ligands, such as substrate fosfomycin. To study the Mn(2+) coordination environment of FosA in the presence of substrate and the inhibitors phosphonoformate and phosphate, we have used (31)P pulsed electron-nuclear double resonance (ENDOR) at 35 GHz to obtain metrical information from (31)P-Mn(2+) interactions. We have found that continuous wave (CW) (31)P ENDOR is not successful in the study of phosphates and phosphonates coordinated to Mn(2+). Parallel studies of phosph(on)ate binding to the Mn(2+) of FosA and to aqueous Mn(2+) ion disclose how the enzyme modifies the coordination of these molecules to the active site Mn(2+). Through analysis of (31)P hyperfine parameters derived from simulations of the ENDOR spectra we have determined the binding modes of the phosph(on)ates in each sample and discerned details of the geometric and electronic structure of the metal center. The (31)P ENDOR studies of the protein samples agree with, or improve on, the Mn-P distances determined from crystal structures and provide Mn-phosph(on)ate bonding information not available from these studies. Electron spin echo electron paramagnetic resonance (ESE-EPR) spectra have also been recorded. Simulation of these spectra yield the axial and rhombic components of the Mn(2+) (S = (5)/(2)) zero-field splitting (zfs) tensor. Comparison of structural inferences based on these zfs parameters both with the known enzyme structures and the (31)P ENDOR results establishes that the time-honored procedure of analyzing Mn(2+) zfs parameters to describe the coordination environment of the metal ion is not valid or productive.  相似文献   

4.
Potapov A  Goldfarb D 《Inorganic chemistry》2008,47(22):10491-10498
The coordination of bicarbonate to Mn (2+) is the simplest model system for the coordination of Mn (2+) to carboxylate residues in a protein. Recently, the structure of such a complex has been investigated by means of X-band pulse EPR (electron paramagnetic resonance) experiments ( Dasgupta, J. ; et al. J. Phys. Chem. B 2006, 110, 5099 ). Based on the EPR results, together with electrochemical titrations, it has been concluded that the Mn (2+) bicarbonate complex consists of two bicarbonate ligands, one of which is monodentate and other bidentate, but only the latter has been observed by the pulsed EPR techniques. The X-band measurements, however, suffer several drawbacks. (i) The zero-field splitting (ZFS) term of the spin Hamiltonian affects the nuclear frequencies. (ii) There are significant contributions from ENDOR (electron nuclear double resonance) lines of the M S not equal +/- (1)/ 2 manifolds. (iii) There are overlapping signals of (23)Na. All these reduce the uniqueness of the data interpretation. Here we present a high-field ENDOR investigation of Mn (2+)/NaH (13)CO 3 in a water/methanol solution that eliminates the above difficulties. Both Davies and Mims ENDOR measurements were carried out. The spectra show that a couple of slightly inequivalent (13)C nuclei are present, with isotropic and anisotropic hyperfine couplings of A iso1 = 1.2 MHz, T perpendicular1 = 0.7 MHz, A iso2 = 1.0 MHz, T perpendicular2 = 0.6 MHz, respectively. The sign of the hyperfine coupling was determined by variable mixing time (VMT) ENDOR measurements. These rather close hyperfine parameters suggest that there are either two distinct, slightly different, carbonate ligands or that there is some distribution in conformation in only one ligand. The distances extracted from T perpendicular1 and T perpendicular2 are consistent with a monodentate binding mode. The monodentate binding mode and the presence of two ligands were further supported by DFT calculations and (1)H ENDOR measurements. Additionally, (23)Na ENDOR resolved at least two types of (23)Na (+) in the Mn (2+)-bicarbonate complex, thus suggesting that the bicarbonate bridges two positively charged metal ions.  相似文献   

5.
Electron spin resonance, pulsed electron nuclear double resonance (ENDOR) spectroscopy at W- and X-band frequencies, and hyperfine sublevel correlation (HYSCORE) spectroscopy have been employed to determine the location of the V(IV) ions in H4PVMo11O40 heteropolyacid catalysts. In these materials the heteropolyanions have the well-known structure of the Keggin molecule. Interactions of the unpaired electrons of the paramagnetic vanadyl ions (VO(2+)) with all relevant nuclei 1H, 31P, and 51V) could be resolved. The complete analysis of the hyperfine coupling tensor for the phosphorus nucleus in the fourth coordination sphere of the V(IV) ion allowed for the first time a detailed structural analysis of the paramagnetic ions in heteropolyacids in hydrated and dehydrated catalysts. The 31P and 1H ENDOR results show that V(IV) ions are incorporated as vanadyl pentaaqua complexes [VO(H2O)5](2+) in the void space between the heteropolyanions in the hydrated heteropolyacid. For the dehydrated H4PVMo11O40 materials the distance between the V(IV) ion and the central phosphorus atom of the Keggin molecule could be determined with high accuracy on the basis of orientation-selective 31P ENDOR experiments and HYSCORE spectroscopy. The results give a first direct experimental evidence that the paramagnetic vanadium species are not incorporated at molybdenum sites into the Keggin structure of H4PVMo11O40 and also do not act as bridges between two Keggin units after calcination of the catalyst. The vanadyl species are found to be directly attached to the Keggin molecules. The VO(2+) ions are coordinated to four or three outer oxygen atoms from one PVMo11 heteropolyanion in a trigonal-pyramidal or slightly distorted square-pyramidal coordination geometry, respectively.  相似文献   

6.
Samples of the anatase phase of titania were treated under vacuum to create Ti(3+) surface-defect sites and surface O(-) and O(2) (-) species (indicated by electron paramagnetic resonance (EPR) spectra), accompanied by the disappearance of bridging surface OH groups and the formation of terminal Ti(3+)-OH groups (indicated by IR spectra). EPR spectra showed that the probe molecule [Re(3)(CO)(12)H(3)] reacted preferentially with the Ti(3+) sites, forming Ti(4+) sites with OH groups as the [Re(3)(CO)(12)H(3)] was adsorbed. Extended X-ray absorption fine structure (EXAFS) spectra showed that these clusters were deprotonated upon adsorption, with the triangular metal frame remaining intact; EPR spectra demonstrated the simultaneous removal of surface O(-) and O(2) (-) species. The data determined by the three complementary techniques form the basis of a schematic representation of the surface chemistry. According to this picture, during evacuation at 773 K, defect sites are formed on hydroxylated titania as a bridging OH group is removed, forming two neighboring Ti(3+) sites, or, when a Ti(4+)-O bond is cleaved, forming a Ti(3+) site and an O(-) species, with the Ti(4+)-OH group being converted into a Ti(3+)-OH group. When the probe molecule [Re(3)(CO)(12)H(3)] is adsorbed on a titania surface with Ti(3+) defect sites, it reacts preferentially with these sites, becoming deprotonated, removing most of the oxygen radicals, and healing the defect sites.  相似文献   

7.
The RNA helicase DbpA promotes RNA remodeling coupled to ATP hydrolysis. It is unique because of its specificity to hairpin 92 of 23S rRNA (HP92). Although DbpA kinetic pathways leading to ATP hydrolysis and RNA unwinding have been recently elucidated, the molecular (atomic) basis for the coupling of ATP hydrolysis to RNA remodeling remains unclear. This is, in part, due to the lack of detailed structural information on the ATPase site in the presence and absence of RNA in solution. We used high-field pulse ENDOR (electron-nuclear double resonance) spectroscopy to detect and analyze fine conformational changes in the protein's ATPase site in solution. Specifically, we substituted the essential Mg(2+) cofactor in the ATPase active site for paramagnetic Mn(2+) and determined its close environment with different nucleotides (ADP, ATP, and the ATP analogues ATPγS and AMPPnP) in complex with single- and double-stranded RNA. We monitored the Mn(2+) interactions with the nucleotide phosphates through the (31)P hyperfine couplings and the coordination by protein residues through (13)C hyperfine coupling from (13)C-enriched DbpA. We observed that the nucleotide binding site of DbpA adopts different conformational states upon binding of different nucleotides. The ENDOR spectra revealed a clear distinction between hydrolyzable and nonhydrolyzable nucleotides prior to RNA binding. Furthermore, both the (13)C and the (31)P ENDOR spectra were found to be highly sensitive to changes in the local environment of the Mn(2+) ion induced by the hydrolysis. More specifically, ATPγS was efficiently hydrolyzed upon binding of RNA, similar to ATP. Importantly, the Mn(2+) cofactor remains bound to a single protein side chain and to one or two nucleotide phosphates in all complexes, whereas the remaining metal coordination positions are occupied by water. The conformational changes in the protein's ATPase active site associated with the different DbpA states occur in remote coordination shells of the Mn(2+) ion. Finally, a competitive Mn(2+) binding site was found for single-stranded RNA construct.  相似文献   

8.
Primary free radical formation in trehalose dihydrate single crystals X-irradiated at 10 K was investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR-induced EPR (EIE) techniques. The ENDOR results allowed the unambiguous determination of six proton hyperfine coupling (HFC) tensors. Using the EIE technique, these HF interactions were assigned to three different radicals, labeled R1, R2 and R3. The anisotropy of the EPR and EIE spectra indicated that R1 and R2 are alkyl radicals (i.e. carbon-centered) and R3 is an alkoxy radical (i.e. oxygen-centered). The EPR data also revealed the presence of an additional alkoxy radical species, labeled R4. Molecular modeling using periodic Density Functional Theory (DFT) calculations for simulating experimental data suggests that R1 and R2 are the hydrogen-abstracted alkyl species centered at C5' and C5, respectively, while the alkoxy radicals R3 and R4 have the unpaired electron localized mainly at O2 and O4'. Interestingly, the DFT study on R4 demonstrates that the trapping of a transferred proton can significantly influence the conformation of a deprotonated cation. Comparison of these results with those obtained from sucrose single crystals X-irradiated at 10 K indicates that the carbon situated next to the ring oxygen and connected to the CH(2)OH hydroxymethyl group is a better radical trapping site than other positions.  相似文献   

9.
The local structure of the trigonal Ti(3+) center in LiF crystal is theoretically investigated by using the perturbation formulas of the anisotropic g factors and g(//) and g(/_) for a 3d(1) ion in trigonally distorted octahedra based on the cluster approach. From the studies on the basis of various possible structure models, the local structure of the trigonal Ti(3+) center may be characterized as [TiF(3)O(3)](6-) cluster (or model I). In this model, the impurity Ti(3+) is expected to substitute for the host Li(+) ion and shift away from its regular lattice site along the [111] (or C(3)) axis by about 0.19 A due to the strong electrostatic attraction of the O(2-) triangle replacing the original F(-) triangle. The magnitude of the above displacement obtained in this work is comparable with that ( approximately 0.2-0.3A) given by ENDOR experiment. Moreover, the cubic field parameter Dq (approximately 1497 cm(-1)) based on the above structure model is also in agreement with that (approximately 1500 cm(-1)) obtained from the experimental optical spectra of the studied system. The theoretical investigations of the local structure in this work may be useful to understand optical properties of Ti-doped LiF.  相似文献   

10.
11.
Recent Electron Paramagnetic Resonance (EPR) studies on alanine powders as a function of irradiation dose and temperature on the one hand and single crystal Electron Nuclear DOuble Resonance (ENDOR) studies on the other hand, showed the presence of at least three radicals contributing to the total alanine EPR spectrum. The latter spectrum obtained after irradiation at room temperature (RT), is dominated by the well-known stable-alanine-radical (SAR) CH3C*HCOO-, also denoted R1. Appropriate heating of irradiated alanine causes the relative contribution of R1 to decrease, resulting in a spectrum mainly caused by the H-abstraction radical CH3C*(NH3)COO-, denoted R2. Although the EPR spectrum of these two radicals could be satisfactorily simulated, their influence on dose reconstruction has not been reported yet. Therefore, a detailed Maximum Likelihood Common Factor Analysis (MLCFA) study has been performed on EPR spectra from polycrystalline alanine samples, after irradiation and heat treatments. Conclusions concerning the number of contributing radicals and their influence on the RT irradiated alanine EPR spectrum will be made.  相似文献   

12.
The EPR g factors of the trigonal Ti3+ center A in LiF:Ti3+ and two additional trigonal Ti3+ centers B and C in LiF:Ti3+:Mg2+ crystals are calculated from the third-order perturbation formulas based on the cluster approach. From the calculations and by considering the Ti3+ displacement along 111 axis obtained by ENDOR experiment, the defect models for the three Ti3+ centers are suggested. For center A, there are two possible models: (i) [Ti3+F3-O3(2-)] cluster and (ii) [Ti3+F6-] cluster with the Ti3+ off-center caused by a neighboring Li+ vacancy (VLi+) at <111> axis. The latter seems the more likely. The defect models of centers B and C are the [Ti3+F3-O(3)2-] clusters associated with a neighboring: Mg2+ ion at the Li+ site along 111 axis in the vicinity of three F- ions and three O2- ions, respectively. The reasonableness of these models is discussed.  相似文献   

13.
In spite of the tremendous progress in the field of pulse electron paramagnetic resonance (EPR) in recent years, these techniques have been scarcely used to investigate high-spin (HS) ferric heme proteins. Several technical and spin-system-specific reasons can be identified for this. Additional problems arise when no single crystals of the heme protein are available. In this work, we use the example of a frozen solution of aquometmyoglobin (metMb) to show how a multi-frequency pulse EPR approach can overcome these problems. In particular, the performance of the following pulse EPR techniques are tested: Davies electron nuclear double resonance (ENDOR), hyperfine correlated ENDOR (HYEND), electron-electron double resonance (ELDOR)-detected NMR, and several variants of hyperfine sublevel correlation (HYSCORE) spectroscopy including matched and SMART HYSCORE. The pulse EPR experiments are performed at X-, Q- and W-band microwave frequencies. The advantages and drawbacks of the different methods are discussed in relation to the nuclear interaction that they intend to reveal. The analysis of the spectra is supported by several simulation procedures, which are discussed. This work focuses on the analysis of the hyperfine and nuclear-quadrupole tensors of the strongly coupled nuclei of the first coordination sphere, namely, the directly coordinating heme and histidine nitrogens and the 17O nucleus of the distal water ligand. For the latter, 17O-isotope labeling was used. The accuracy of our results and the spectral resolution are compared in detail to an earlier single-crystal continuous-wave ENDOR study on metMb, and it will be shown how additional information can be obtained from the multi-frequency approach. The current work is therefore prone to become a template for future EPR/ENDOR investigations of HS ferric heme proteins for which no single crystals are available.  相似文献   

14.
We report a synergistic effect involving hydrogenation and nitridation cotreatment of TiO(2) nanowire (NW) arrays that improves the water photo-oxidation performance under visible light illumination. The visible light (>420 nm) photocurrent of the cotreated TiO(2) is 0.16 mA/cm(2) and accounts for 41% of the total photocurrent under simulated AM 1.5 G illumination. Electron paramagnetic resonance (EPR) spectroscopy reveals that the concentration of Ti(3+) species in the bulk of the TiO(2) following hydrogenation and nitridation cotreatment is significantly higher than that of the sample treated solely with ammonia. It is believed that the interaction between the N-dopant and Ti(3+) is the key to the extension of the active spectrum and the superior visible light water photo-oxidation activity of the hydrogenation and nitridation cotreated TiO(2) NW arrays.  相似文献   

15.
Electron Paramagnetic Resonance (EPR), optical and infrared (IR) spectral studies have been performed on the pure and Cu-adsorbed exoskeletons of marine environment. The EPR spectrum of exoskeletons at room temperature exhibits a sharp signal at g approximately 1.9970. The possible redox mechanisms have been noticed on heating these exoskeletons in which the low spin Mn(3+) reduces to Mn(2+). The optical absorption spectra also give the evidence of the presence of Mn(3+) ions. The effects of thermal sintering on the EPR spectra have been studied and discussed in detail. The Cu-adsorbed samples clearly showed the adsorption of the Cu(2+) ions over CaCO(3) and the redox mechanism in these samples have been monitored by EPR.  相似文献   

16.
Electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and M?ssbauer spectroscopies and other physical methods have provided important new insights into the radical-SAM superfamily of proteins, which use iron-sulfur clusters and S-adenosylmethionine to initiate H atom abstraction reactions. This remarkable chemistry involves the generation of the extremely reactive 5'-deoxyadenosyl radical, the same radical intermediate utilized in B12-dependent reactions. Although early speculation focused on the possibility of an organometallic intermediate in radical-SAM reactions, current evidence points to novel chemistry involving a site-differentiated [4Fe-4S] cluster. The focus of this forum article is on one member of the radical-SAM superfamily, pyruvate formate-lyase activating enzyme, and how physical methods, primarily EPR and ENDOR spectroscopies, are contributing to our understanding of its structure and mechanism. New ENDOR data supporting coordination of the methionine moiety of SAM to the unique site of the [4Fe-4S]2+/+ cluster are presented.  相似文献   

17.
N-confused or inverted porphyrins, a family of porphyrin isomers that contain a confused pyrrole ring connected through its alpha and beta' positions in the macrocycle, exhibit unique physical and chemical properties, like, for instance, the ability to stabilize unusual oxidation states of metals due to the reactivity of the inverted pyrrole. In this Article, a combined multifrequency continuous-wave and pulse electron paramagnetic resonance (EPR) study of the copper(II) complex of N-confused tetraphenylporphyrin (TPP) is presented. By use of pulse EPR methods like ENDOR and HYSCORE, the magnetic interactions between the unpaired electron of the compound and the surrounding nitrogen nuclei were revealed. Through 13C labeling of the macrocycle, a detailed study of the carbon hyperfine interaction became possible and provided further insight into the character of the metal-carbon bond. The observed hyperfine couplings of the ligand atoms in the first coordination sphere showed the presence of a remarkably strong sigma Cu-C bond and allowed for a detailed analysis of the spin delocalization over the porphyrin macrocycle. Interestingly, it was found that the observed delocalization is approximately 11% larger than the corresponding one for CuTPP.  相似文献   

18.
The interaction of the small (140 amino acid) protein, alpha-synuclein (alphaS), with Cu(2+) has been proposed to play a role in Parkinson's disease (PD). While some insight from truncated model complexes has been gained, the nature of the corresponding Cu(2+) binding modes in the full length protein remains comparatively less well characterized. This work examined the Cu(2+) binding of recombinant human alphaS using Electron Paramagnetic Resonance (EPR) spectroscopy. Wild type (wt) alphaS was shown to bind stoichiometric Cu(2+) via two N-terminal binding modes at physiological pH. An H50N mutation isolated one binding mode, whose g parallel, A parallel, and metal-ligand hyperfine parameters correlated well with a {NH2, N(-), beta-COO(-), H2O} mode previously identified in truncated model fragments. Electron spin-echo envelope modulation (ESEEM) studies of wt alphaS confirmed the second binding mode at pH 7.4 involved coordination of His50 and its g parallel and A parallel parameters correlated with either {NH2, N(-), beta-COO(-), N(Im)} or {N(Im), 2 N(-)} coordination observed in alphaS fragments. At pH 5.0, His50-anchored Cu(2+) binding was greatly diminished, while {NH2, N(-), beta-COO(-), H2O} binding persisted in conjunction with another two binding modes. Metal-ligand hyperfine interactions from one of these indicated a 1N3O coordination sphere, which was ascribed to a {NH2, CO} binding mode. The other was characterized by a spectrum similar to that previously observed for diethylpyrocarbonate-treated alphaS and was attributed to C-terminal binding centered on Asp121. In total, four Cu(2+) binding modes were identified within pH 5.0-7.4, providing a more comprehensive picture of the Cu(2+) binding properties of recombinant alphaS.  相似文献   

19.
The incorporation of Ti ions within the framework of aluminophosphate zeotype AlPO-5 and their chemical reactivity is studied by means of CW-EPR, HYSCORE, and UV-vis spectroscopies. Upon reduction, Ti(3+) ions are formed, which exhibit large (31)P hyperfine couplings, providing direct evidence for framework substitution of reducible Ti ions at Al sites.  相似文献   

20.
Primary free radical formations in fructose single crystals X-irradiated at 10 K were investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three principal crystallographic planes and a fourth skewed plane allowed the unambiguous determination of five proton hyperfine coupling tensors. From the EIE studies, these hyperfine interactions were assigned to three different radicals, labeled T1, T1* and T2. For the T1 and T1* radicals, the close similarity in hyperfine coupling tensors suggests that they are due to the same type of radical stabilized in two slightly different geometrical conformations. Periodic density functional theory calculations were used to aid the identification of the structure of the radiation-induced radicals. For the T1/T1* radicals a C3 centered hydroxyalkyl radical model formed by a net H abstraction is proposed. The T2 radical is proposed to be a C5 centered hydroxyalkyl radical, formed by a net hydrogen abstraction. For both radicals, a very good agreement between calculated and experimental hyperfine coupling tensors was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号