首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
设计实验证明了Ni2P和MoS2催化剂在喹啉加氢脱氮反应中存在协同效应,该协同效应能够用氢溢流遥控模型理论解释。Ni2P//MoS2的协同因子随反应温度升高而减小,并且略微大于相同反应条件下NiSx//MoS2的协同因子。Ni2P产生的溢流氢能够提高MoS2催化剂上加氢活性位的数量,促使Ni2P//MoS2催化体系增加1,2,3,4-四氢喹啉和5,6,7,8-四氢喹啉加氢生成十氢喹啉的速率,提高其脱氮活性;因此,Ni2P对MoS2催化剂是很好的助剂。  相似文献   

2.
采用程序升温还原法制备了一系列Ni2P/Ce-Al2O3催化剂,考察了制备过程中Ni2P负载量对催化剂结构及萘加氢饱和性能的影响。结果表明,Ni2P负载量可调控活性组分Ni2P与载体Ce-Al2O3之间的相互作用,进而调变催化剂的比表面积、Ni2P粒径及催化剂活性位点数量。当Ni2P负载量(质量分数)为17%时,催化剂具有较大的比表面积(40 m2/g)、较小的Ni2P粒径(26.3 nm)和最多的活性位点数量(26.7 μmol/g);同时,该催化剂萘转化率为95%,十氢萘选择性为76%,且活性稳定性良好,这主要归因于催化剂大的比表面积和高的活性位点数量为反应提供了更多的场所。  相似文献   

3.
以介孔分子筛SBA-15 为载体, 通过分步浸渍硝酸镍、磷酸氢二铵、钼酸铵, 然后在H2气流下程序升温还原(H2-TPR), 制备了一系列不同Mo 含量的Mo-Ni2P/SBA-15 催化剂. 采用X 射线衍射(XRD)、氮气吸脱附(BET)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对催化剂的结构进行了表征, 评价了催化剂对二苯并噻吩(DBT)的加氢脱硫(HDS)活性. 结果表明, Mo-Ni2P/SBA-15 催化剂仍然保留有介孔结构, 催化剂的物相主要是Ni2P. 催化剂表面的Ni 以Niδ+和Ni2+形式存在; P以Pδ-和P5+形式存在; Mo以Moδ+和Mo6+形式存在. Mo能促进催化性能的提高, 其中Mo含量为1% (w, 质量分数)的Mo-Ni2P/SBA-15 催化剂具有最好的二苯并噻吩加氢脱硫催化活性, 在反应温度为380 ℃, 反应压力为3.0 MPa的条件下, 二苯并噻吩的转化率可达99.03%, 所有考察的Mo-Ni2P/SBA-15都以直接加氢脱硫(DDS)途径为主.  相似文献   

4.
对分层装填的Ni2P//MoS2催化剂上的二苯并噻吩加氢脱硫反应进行了研究。结果表明,分层装填的Ni2P/Al2O3和MoS2/Al2O3催化剂在二苯并噻吩加氢脱硫反应中存在氢溢流效应,氢溢流有助于提高MoS2催化剂的活性位密度和加氢脱硫反应速率。由于Ni2P比NiSx具有更强的氢分子解离能力,Ni2P//MoS2催化体系的氢溢流因子略高于NiSx//MoS2;相对于NiSx,Ni2P对MoS2催化剂是更好的助剂。  相似文献   

5.
采用低温热解次磷酸盐法制备了Ni2P-L、Pr-Ni2P-L和Ce-Ni2P-L催化剂,并采用XRD、H2-TPR、BET、CO吸附、XPS等手段对制备得到的催化剂进行了表征。以二苯并噻吩(DBT)为模型化合物,研究了Pr、Ce稀土元素对低温还原法制备的Ni2P-L催化剂加氢脱硫(HDS)性能的影响。结果表明,催化剂添加稀土Pr和Ce能够抑制Ni5P4和其他杂晶的生成,从而促进活性相Ni2P的生成;添加稀土能提高催化剂对联苯(BP)的选择性,但催化剂的总HDS活性略有降低。  相似文献   

6.
以廉价的三苯基膦(PPh3)为磷源,以三正辛胺(TOA)为液相反应体系,溶剂热法制备了负载型Ni2P/MCM-41催化剂,并采用XRD、BET、CO吸附、XPS和TEM等手段对制备得到的催化剂进行了表征。该方法的合成温度为330 ℃,反应在常压下进行,比程序升温还原法(H2-TPR)所需的还原温度至少低300 ℃,比传统的溶剂热法合成原料更廉价。以二苯并噻吩(DBT)为模型化合物,比较了所制备的Ni2P/MCM-41催化剂与H2-TPR法制备的催化剂结构以及加氢脱硫(HDS)性能。结果表明,溶剂热法能够降低催化剂表面上P物种的集聚,从而得到较大比表面积的Ni2P催化剂(690 m2/g);促进小尺寸、高度分散的Ni2P活性相的生成;制得的催化剂的HDS活性明显高于H2-TPR法催化剂,在反应温度340 ℃,质量空速2.0 h-1,H2/油=500(体积比),3.0 MPa的条件下,Ni2P/M41-R催化剂DBT转化率达到96.8%,较H2-TPR法高10.6%。  相似文献   

7.
以正丙醇锆(n)和Zr(SO42(m)为锆源制备了Zr改性的Ni2P/ZrO2-SBA-15(n)和Ni2P/ZrO2-SBA-15(m)催化剂,并采用XRD、BET、CO吸附、XPS、NH3程序升温脱附等手段对催化剂进行了表征。以苯并呋喃(BF)为模型化合物,研究了催化剂加氢脱氧(HDO)性能。结果表明,Zr改性后,形成了新的层状结构的ZrP;Zr的引入有助于生成更多、更小粒径的Ni2P活性相,催化剂的酸强度和酸量均提高。与正丙醇锆相比,Zr(SO42为锆源能够获得比表面积大、酸性强、酸量大的催化剂,得到更多的ZrP相、更小粒径的Ni2P晶粒,暴露更多的Ni活性位点。Ni2P/ZrO2-SBA-15(n)和Ni2P/ZrO2-SBA-15(m)的BF HDO产率分别为71.5%和85.9%,较Ni2P/SBA-15分别提高了14.0%和28.4%。催化剂HDO活性、脱氧产物选择性和产率大小顺序为:Ni2P/ZrO2-SBA-15(m) > Ni2P/ZrO2-SBA-15(n) > Ni2P/SBA-15。  相似文献   

8.
采用等体积浸渍法制备了Ni/SiO2及Ni与金属助剂M(M=Fe、Co、Cu、Zn及Ga)物质的量比为30的Ni基双金属催化剂(记作Ni30M/SiO2),利用H2-TPR、XRD、H2化学吸附、NH3-TPD以及N2物理吸附-脱附等手段对催化剂进行了结构表征,研究了不同助剂对催化剂结构与苯甲醚加氢脱氧性能影响。结果发现,金属助剂影响了催化剂前驱体中镍物种的还原性能,表明金属助剂及镍之间存在一定相互作用。Ni30M/SiO2中Ni-M双金属晶粒粒径和Ni/SiO2中金属Ni晶粒粒径相近。由于表面张力较低的金属会在双金属晶粒表面富集,Ni30M/SiO2的H2化学吸附量不同程度地低于Ni/SiO2。另外,Ni30M/SiO2催化剂的酸量(尤其较弱酸中心酸量)高于Ni/SiO2。在300℃、常压、苯甲醚质量空速1.0 h-1及H2与苯甲醚物质的量比为25:1条件下考察了各催化剂苯甲醚的加氢脱氧性能。Ni30M/SiO2上苯甲醚转化率不同程度低于Ni/SiO2,原因在于Ni30M/SiO2催化剂H2化学吸附量较低。Ga及Zn改性催化剂上三苯(包括苯、甲苯及二甲苯)选择性分别为81.7%和76.8%,高于Ni/SiO2(71.5%),且Ni30Ga/SiO2及Ni30Zn/SiO2上三苯收率(分别为65.0%及63.8%)高于或接近于Ni/SiO2(63.7%)。Ni/SiO2及Ni30M/SiO2催化剂中,Ni30Zn/SiO2具有较高甲基转移能力及较低C-C键氢解活性。从提高碳收率、降低耗氢量角度而言,Ni30Zn/SiO2具有较佳的加氢脱氧性能,与Ni和Zn之间作用及Zn亲氧性高于Ni有关。  相似文献   

9.
采用程序升温还原法制备氧化铝载体负载的氮化镍钼。采用XRD、BET、H2-TPR和XPS等表征方法对氮化物的理化性质进行研究;并以噻吩和四氢萘的环己烷溶液为原料,考察氮化物作为加氢催化剂的加氢精制性能。实验结果表明,制备的负载型氮化镍钼中氮化物的晶型为Ni2Mo3N;H2-TPR表明,氮化镍钼表面钝化层的还原温度为200℃~400℃;氮化物表面Mo离子存在Mo6+、Mo4+、Moδ+离子,Moδ+离子占多数。氧化铝负载氮化镍钼具有较好的加氢脱硫初始活性和稳定性;原料中不含硫时,催化剂的加氢脱芳初始活性较好,但加氢脱芳稳定性差,原料中硫的引入加速了催化剂加氢脱芳活性的失活。  相似文献   

10.
采用水热法合成了具有高活性的磷化镍纳米晶(Ni2P), 并合成了氮、 硫共掺杂石墨烯负载磷化镍纳米催化剂(Ni2P/NSRGO). 对该催化剂的结构和形貌进行了表征, 并研究其电催化析氢性能. 电化学测试结果表明, Ni2P/NSRGO复合电催化剂的析氢性能优于Ni2P/RGO催化剂, 具有较小的Tafel斜率(35 mV/dec)、 较低的过电位(η10=140 mV)和良好的稳定性.  相似文献   

11.
以氯化镍(Ni Cl_2·6H_2O)为镍源、次磷酸铵(NH_4H_2PO_2)为磷源、Ti-MCM-41为载体,通过程序升温还原法制备了Ni_2P/Ti-M CM-41催化剂,并采用H_2-TPR、XRD、BET、XPS、TEM等手段对其结构和性质进行了表征。以二苯并噻吩(DBT)为模型化合物,考察了还原温度对Ni_2P/Ti-M CM-41催化剂的加氢脱硫(HDS)性能的影响。结果表明,程序升温还原法制备的Ni_2P/Ti-M CM-41催化剂前驱体的还原温度为318℃,比传统程序升温还原制备的Ni_2P低200℃。在350-500℃下还原得到的催化剂活性相为单一的Ni_2P相,较低的还原温度有利于形成更小粒径的磷化镍晶粒。还原温度为400℃时,制得的Ni_2P/Ti-M CM-41催化剂比表面积高、分散性最好、表面P富集少,具有最高的HDS活性;在340℃、3.0 M Pa、H_2/油体积比500、质量空速(WHSV)为2.0 h~(-1)的条件下,二苯并噻吩HDS转化率达到99.4%。  相似文献   

12.
采用程序升温还原法和次磷酸盐歧化法制备了Ni_2P/SiO_2催化剂,结合现代仪器分析表征技术,研究了制备方法对Ni_2P/SiO_2催化剂结构和萘加氢性能的影响。结果表明,两种方法均可制备出仅含Ni_2P活性相的Ni_2P/SiO_2催化剂,在反应温度340℃、氢气压力4 MPa、空速为20.8 h~(-1)下,程序升温还原法制备的Ni_2P/SiO_2催化剂表现出更高的萘加氢活性,这主要是因为程序还原法制备的Ni_2P/SiO_2催化剂中有更多Ni_2P物种生成,提供了较多的活性位点(CO吸附量21.6μmol/g);且催化剂表面弱酸位点多,有利于芳烃吸附。当选用程序升温还原法制备Ni_2P/SiO_2催化剂时,在保证生成纯相Ni_2P的前提下,较低的Ni/P比更有利于合成高加氢活性的Ni_2P/SiO_2催化剂。  相似文献   

13.
在低还原温度下程序升温还原法制备了Ni2P/MCM-41催化剂,并采用H2-TPR、TG-DTG、XRD、BET、XPS等手段对制备的催化剂进行了表征,考察了还原温度对活性相Ni2P形成以及催化剂二苯并噻吩HDS性能的影响。结果表明,在210~390℃下还原得到的催化剂活性相为单一的Ni2P相;在390℃下还原得到的催化剂具有最高的二苯并噻吩HDS活性,在反应温度340℃、反应压力3.0 MPa、氢/油体积比500、质量空速(WHSV)2.0 h-1的条件下二苯并噻吩HDS转化率达到99.0%。  相似文献   

14.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备.通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能.结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P.不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

15.
研究了在不同的半导体体系(TiO2, CdS和C3N4)中, Ni2P光催化甲酸(HCOOH)分解制氢的助催化效应. 作为助催化剂, Ni2P与3种半导体形成的复合光催化剂均表现出良好的HCOOH分解制氢活性. Ni2P/TiO2, Ni2P/CdS, Ni2P/C3N4 3种光催化剂最优的产氢活性分别为41.69, 22.45和47.67 μmol·mg-1·h-1, 分别为纯TiO2, CdS和C3N4的3.8倍、 10倍和210倍, 表明Ni2P在光催化HCOOH分解制氢体系中具有普适性. 研究了光催化HCOOH分解制氢的机理, Ni2P的加入使光生电子从半导体转移至Ni2P, 提高了光生电子-空穴对的分离效率; Ni2P还促进了活性物种·OH的生成, 提高了光催化HCOOH分解的产氢速率.  相似文献   

16.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体,以柠檬酸(CA)为络合剂采用浸渍法制备了Ni2P负载的TiO2-Al2O3复合载体催化剂,并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定、热重-差热分析(TG-DTA)、程序升温氢还原(H2-TPR)和透射电子显微镜(TEM)技术对催化剂的结构和性质进行了表征,考察了加入CA对Ni2P/TiO2-Al2O3催化剂二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明,适量的CA可以丰富催化剂的孔道,提高催化剂的比表面积,使催化剂具有更好的孔结构、更高的金属活性组分分散度和更均一的活性组分尺寸。CA的引入可以减弱金属与载体之间的相互作用,显著降低Ni和P前驱体的还原温度,促进Ni-P-O活性相前驱态的生成。在360℃、3.0 MPa、氢油比500(体积比)、液时体积空速2.0 h-1的条件下,反应4 h时二苯并噻吩转化率达到99.5%。在48 h内二苯并噻吩转化率可稳定在95.0%左右。  相似文献   

17.
胡健  蒙延双  胡倩茹 《电化学》2021,27(5):540-548
以离子液体为碳源和氮源、次亚磷酸钠为磷源、乙酸镍为镍源,一步法制备了磷化镍/氮磷共掺杂碳(Ni2P/NPC)复合材料。SEM、TEM等检测结果表明Ni2P纳米颗粒在N、P共掺杂碳骨架上均匀分布。将所制备Ni2P/NPC作为锂离子电池负极材料时,Ni2P/NPC电极在0.1、0.5、1、3和5 A·g-1电流密度下的放电比容量分别为377.7、 294.1、 265.4、211.7和187.5 mAh·g-1。当电流密度重新回到0.1 A·g-1,放电比容量为368.1 mAh·g-1。电极结构在大倍率下可以保持稳定,表现出优异的倍率性能。在0.5 A·g-1的电流密度下经200次循环后放电比容量维持在301.8 mAh·g-1,容量保持率为80.7%,CV曲线证实Ni2P/NPC在储锂过程中是由扩散过程和电容行为共同控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号