首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
基于CFD数值模拟方法,采用RNG k-ε湍流模型对某体育场阶梯型悬挑屋盖风压进行了模拟研究。分析了屋盖风压分布特性及风向对风压的影响;并且考虑周边建筑对风场的扰动影响,引入风压系数干扰因子IF量化分析了周边建筑对体育场屋盖风压分布的气动干扰效应。结果表明:此类阶梯型大跨屋盖主要受风吸力作用,屋盖檐口、角部区域的风压系数量值较大;0°和180°风向角下平均风压随测点位置变化趋势大致相同,风压在台阶转折处发生突变;屋盖各区域的风载体型系数对风向角的敏感程度存在较大差异;周边建筑对屋盖风压主要起遮挡效应,对屋盖某些局部区域的风压起放大效应。  相似文献   

2.
为了研究脉动风引起的结构风致响应,以一塔二线输电塔-线体系为对象,模拟了不同风向角下风荷载导致的结构时程响应.以Davenport风速谱为验算目标来模拟脉动风场,在平均风速的基础上施加脉动风动力时程荷载,分析风向角分别为0°、90°和45°时输电塔-线体系的风振时程响应.依据三种工况下结构中的位移及内力分布情况,分析了主要构件的强度及稳定性,并与基于规范得到的结果进行比较.结果表明,当输电塔层数小于6时,按规范方法计算的强度应力均比按单向流固耦合(Fluid-Solid Interaction, FSI)方法计算的强度应力大;当层数大于6时,按规范方法计算的强度应力与按FSI方法计算的强度应力相当;在45°和90°风向角工况下,按规范方法计算的部分层数的强度应力略小于按FSI方法计算的强度应力.考虑到脉动风的随机性大,建议适当增加风振荷载系数,以确保输电塔-线结构体系的强度安全性.  相似文献   

3.
为了获得落地四坡房屋表面积雪分布规律,根据风雪运动机理选取适当的雪粒粒径、积雪密度、沉降速度等条件,考虑积雪侵蚀沉积等影响因素,基于Euler-Euler多相流理论,使用FLUENT软件Mixture多相流模型模拟了立方体周围积雪及高低屋盖模型表面积雪分布,并与实测进行了比较,确定了湍流物理方程、数值风洞尺寸、细部网格及数量、壁面条件等各计算参数设置。以风速、风向角为参数,模拟落地四坡房屋屋面积雪分布得出:随着风速增加,屋面积雪量不断减少,15m/s风速下屋面积雪呈完全侵蚀状态,低风速下屋面积雪更多;屋面各区域积雪漂移随着风向角的改变不断改变,总体表现为侵蚀状态沉积区域较少;在5m/s风速下落地四坡房屋的迎风面各区域积雪分布系数在0.5以下,迎风屋顶各区域积雪分布系数基本为0,背风屋顶各区域积雪分布系数变化幅度高达0.8,背风面各区域积雪分布系数整体保持在0.9附近。得到了5m/s风速下区域积雪分布系数表,可为该类房屋的设计使用提供理论依据。  相似文献   

4.
低层四坡屋面房屋风载体型系数的分析与实用计算   总被引:1,自引:0,他引:1  
利用数值模拟和风洞模型试验,获得了低层四坡屋面房屋在不同风向角下的屋面风载体型系数的实用计算公式。首先对缩尺比为1∶20的四坡屋面房屋模型(足尺为平面7.5 m×15 m,檐口高度9.6 m,挑檐长度1.5m)进行了风洞试验,再通过改变体型参数对5种屋面坡角、5种房屋高宽比和长宽比情况的屋面风压进行了数值模拟。通过对数值模拟和试验结果的分析发现,屋面坡角及房屋高宽比是影响屋面风荷载的主要因素。据此提出了屋面各分区风载体型系数的实用计算公式,并给出了计算实例,将计算结果与试验结果作了比较。结果表明,该实用公式简便准确,可直接供四坡屋面房屋抗风设计参考和应用。  相似文献   

5.
平屋盖风压分布的数值模拟   总被引:2,自引:0,他引:2  
基于Reynolds时均N-S方程和RSM模型对平屋面的风压分布进行了数值模拟,在此基础上系统研究了风向角、跨高比、地面粗糙度、风速等因素对屋面风压分布的影响,探讨了结构周围流场的绕流特性,最后根据屋面的结构形式及风压分布特点将屋面进行分区,给出了屋面在不同风向角下的分区风载体型系数以供工程设计参考。  相似文献   

6.
基于Fluent软件平台,采用雷诺应力模型(RSM),对一类实际瓦屋面双坡低矮建筑的风荷载特性进行了研究.首先通过对TTU标准模型的计算,验证了本文数值模拟方法的可行性并确定了合适的网格及计算参数.然后以实际瓦屋面双坡低矮建筑作为典型计算模型,对三种不同屋盖的体型系数进行了数值模拟,将实际瓦屋面模型与风洞试验模型进行了对比分析,并分析了不同风向下瓦片屋盖对于屋面风压的影响.结果表明,实际瓦屋面模型的风压值整体上比风洞试验简化模型的风压值要小,两模型的风压差值从0°风向到90°风向呈递减趋势,且迎风面各分块的风压差普遍大于背风面各分块的风压差.结果还表明,在各风向角下,瓦片屋盖对屋面风压的影响程度不一,且折线瓦对风压的影响相比波形瓦要大.  相似文献   

7.
下击暴流引发的结构破坏在世界各地都有发生,而我国相关的设计规范尚未考虑这种强风载荷。针对下击暴流天气下角钢格构塔的风载荷特性问题,通过求解NS方程,获得了全尺度下击暴流风场的风速剖面分布;首次采用结构化网格生成技术,针对一个典型的角钢格构塔单元节段模型进行了网格划分;根据计算所得到的不同位置的风速剖面,研究了格构塔的风载荷特性,得到了角钢格构塔在下击暴流风场中0.5D+100m、0.5D+250m、0.5D+500m、0.5D+1000m、0.5D+2000m、0.5D+3000m、0.5D+4000m位置处所受风载荷的情况(其中D代表入口直径)。结果表明计算得到的风载荷体型系数与GB50009标准规定值吻合良好。本文验证了对于格构塔这种复杂结构外形采用结构化网格进行CFD数值模拟的可行性,为以后整体塔架的数值模拟奠定了基础。  相似文献   

8.
风致折叠网壳结构表面积雪分布CFD模拟   总被引:3,自引:2,他引:1  
为研究风致折叠网壳结构表面积雪的分布规律,基于Euler-Euler方法和空气相与雪相单向耦合的基本假设,运用通用计算流体动力学软件ANSYS Fluent的Mixture多相流模型理论,并考虑壁面上积雪的侵蚀与沉积,建立风致雪漂的数值模型。首先,模拟立方体周围积雪分布并与实测结果对比,探讨与分析数值风洞的关键技术与参数,证实三方程k-kl-ω湍流模型能更好地对风雪两相流进行模拟。在此基础上,以风速和风向角为分析参数,模拟折叠网壳结构表面积雪分布。结果表明,10 m/s以下较低风速的持续作用对积雪分布尤为不利,受风向角变化影响,结构表面积雪的侵蚀与沉积发生在不同分区,其中迎风面被大面积侵蚀、背风面局部沉积,在不同的风向角下同一分区的积雪分布系数相对改变量最高达1.28。模拟获得结构表面在全风向角下的最不利积雪分布系数,为近似体型结构的抗风雪设计理论提供参考依据。  相似文献   

9.
为研究风致折叠网壳结构表面积雪的分布规律,基于Euler-Euler方法和空气相与雪相单向耦合的基本假设,运用通用计算流体动力学软件ANSYS Fluent的Mixture多相流模型理论,并考虑壁面上积雪的侵蚀与沉积,建立风致雪漂的数值模型。首先,模拟立方体周围积雪分布并与实测结果对比,探讨与分析数值风洞的关键技术与参数,证实三方程k-kl-ω湍流模型能更好地对风雪两相流进行模拟。在此基础上,以风速和风向角为分析参数,模拟折叠网壳结构表面积雪分布。结果表明,10 m/s以下较低风速的持续作用对积雪分布尤为不利,受风向角变化影响,结构表面积雪的侵蚀与沉积发生在不同分区,其中迎风面被大面积侵蚀、背风面局部沉积,在不同的风向角下同一分区的积雪分布系数相对改变量最高达1.28。模拟获得结构表面在全风向角下的最不利积雪分布系数,为近似体型结构的抗风雪设计理论提供参考依据。  相似文献   

10.
为获得攒尖四坡屋面的风致雪漂移规律,基于欧拉-欧拉方法和风雪单向耦合假定,运用计算流体动力学软件,选取Mixture模型分别对立方体周边和高低屋面上的风致雪漂移运动进行数值模拟,将模拟结果与两者的实地观测数据对比,探讨分析数值风洞的关键技术和参数设置,验证数值模拟方法的合理性与可靠性。依据攒尖四坡房屋的使用功能要求,设计分析模型与分析工况,在试算的基础上对屋面进行分区。以风速5 m/s,7 m/s,9 m/s,11 m/s,13 m/s和15 m/s,风向角0°,15°,30°和45°以及屋面坡度25°,30°,34°,40°和45°为分析参数,对攒尖四坡房屋的120种工况进行数值模拟,得到屋面各分区侵蚀沉积的基本规律,提出可用于抗雪设计的屋面积雪分布系数。研究表明,风向角的改变会使屋面积雪分布状态发生较大程度的变化,风速和屋面坡度的变化对屋面整体积雪量有较大影响。  相似文献   

11.
韩文娟  刘海 《力学与实践》2010,32(4):109-111
对《力学》中的物体自由度进行多方面分析,以深化教学、提高学生正 确分析物理问题的能力.使用实际教学分析的研究方法,在《力学》范围内讨论自由度与坐标、 自由与约束的关系并得以下结论: (1) 同一物体的自由度随其所在的``空间'不同而不同, 不因坐标系的选取不同而 异, 在同类参考系中不因参考系的动静而有别;(2)自由度遵循叠加原理. 讨论了质点系的总自由度及相关计算问题,并指出研究《力学》中自由度的意义.  相似文献   

12.
13.
14.
The present paper deals with development and design of new methods utilizing Wiedemann's effect for determination of state of strain in building structures. Wiedemann's effect and some features of torsional strain of magnetic field are the basis of new experimental method. Especially the point electromagnetic strain gages using the effect of pure torsion of electromagnetic field to enable universal examination. For strain-gage measurements, almost all physical quantities are used which can be related to the variation in length of the structures. From the electric strain measurements, the most commonly used methods are the measurements by resonance-wire strain gages or by electric-resistance strain gages. In this paper, electromagnetic strain gages are discussed using the Wiedemann effect, and the author describes some new measuring equipment and his own suggestions and methods based on an application of this effect.  相似文献   

15.
16.
17.
It is well known that the problem on nonseparating potential flow of an incompressible fluid about an array of profiles reduces to an integral equation for a certain real function, determined on the contours of the profiles of the array. As such a function one can take, as was done, for instance, in [1–5], the relative velocity of the fluid on the profiles of the array. For arrays of profiles of arbitrary shape it is necessary to solve the corresponding integral equation numerically. In the particular examples of the calculation of aerodynamic arrays that are available [1–3] the numerical methods used were based on the approximate evaluation of contour integrals by rectangle formulas. As investigations showed, sizeable errors arose thereby in the approximate solution obtained, these being especially significant in the case of curved profiles of relatively small bulk. In the present paper a method for the numerical solution of the integral equation obtained in [5] is proposed. The method is based on the replacement of a profile of the array with an inscribed N polygon, the length of whose sides is of the order N–1 and whose internal angles are close to . Convergence with increasing N of the numerical solution to an exact solution of the integral equations at the reference points is demonstrated. Examples of the calculation are given.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 105–112, March–April, 1972.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号