首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
Jun Kato  Michihito Chiba 《Talanta》2009,79(4):1154-1160
Trace amounts of l-cysteine can function as a trigger, i.e., reaction initiator, in the autocatalytic sodium sulfite/hydrogen peroxide reaction system. Rapidly changing of pH after induction time is visually confirmed by color changing of bromothymol blue in this autocatalytic reaction. Based on this finding, μg L−1 levels of l-cysteine were measured over time using the autocatalytic reaction system. The determination range using the above method was 5.0 × 10−8-2.5 × 10−6 M, the detection limit (3σ) was 1.8 × 10−8 M (1.94 μg L−1), and the relative standard deviation was 2.41% at an l-cysteine concentration of 5 × 10−7 M (n = 5). This method was also applied to length detection-flow injection analysis. The determination range for the flow injection analysis was 2.0 × 10−7-1.0 × 10−5 M. The detection limit (3σ) was 1.4 × 10−7 M (17.0 μg L−1), and the relative standard deviation was 0.91% at an initial l-cysteine concentration of 10−6 M (n = 5).  相似文献   

2.
?ükriye Ulubay 《Talanta》2010,80(3):1461-5138
Cu nanoparticles have been electrochemically incorporated polypyrrole film that was used for modification of the glassy carbon electrode surface. The performance of the electrode has been characterized by cyclic voltammetry and atomic force microscopy. The electrode has shown high electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) simultaneously in a phosphate buffer solution (pH 7.00). The electrocatalytic oxidation currents of UA and DA were found linearly related to concentration over the range 1 × 10−9 to 1 × 10−5 M for UA and 1 × 10−9 to 1 × 10−7 M for DA using DPVs method. The detection limits were determined as 8 × 10−10 M (s/n = 3) for UA and 8.5 × 10−10 M (s/n = 3) for DA at a signal-to-noise ratio of 3.  相似文献   

3.
Zhao Y  Zhao S  Huang J  Ye F 《Talanta》2011,85(5):2650-2654
A sensitive method based on quantum dot (QD)-enhanced capillary electrophoresis-chemiluminescence (CE-CL) detection was developed for simultaneous determination of dopamine (DA) and epinephrine (E). In this work, CdTe QD was added into the running buffer of CE to catalyze the post-column CL reaction between luminol and hydrogen peroxide, achieving higher CL emission. Negative peaks were produced due to the inhibitory effects on CL emission from DA and E eluted from the electrophoretic capillary. The decrease in CL intensity was proportional to the concentration of DA and E in the range of 8.0 × 10−8-5.0 × 10−6 M and 4.0 × 10−8-5.0 × 10−6 M, respectively. Detection limits for DA and E were 2.3 × 10−8 M and 9.3 × 10−9 M, respectively. Using this method, the levels of DA and E in human urine from healthy donors were determined.  相似文献   

4.
A rapid and simple method using capillary electrophoresis (CE) with chemiluminescence (CL) detection was developed for the determination of levodopa. This method was based on enhance effect of levodopa on the CL reaction between luminol and potassium hexacyanoferrate(III) (K3[Fe(CN)6]) in alkaline aqueous solution. CL detection employed a lab-built reaction flow cell and a photon counter. The optimized conditions for the CL detection were 1.0 × 10−5 M luminol added to the CE running buffer and 5.0 × 10−5 M K3[Fe(CN)6] in 0.6 M NaOH solution introduced postcolumn. Under the optimal conditions, a linear range from 5.0 × 10−8 to 2.5 × 10−6 M (r = 9991), and a detection limit of 2.0 × 10−8 M (signal/noise = 3) for levodopa were achieved. The precision (R.S.D.) on peak area (at 5.0 × 10−7 M of levodopa, n = 11) was 4.1%. The applicability of the method for the analysis of pharmaceutical and human plasma samples was examined.  相似文献   

5.
A capacitive immunosensor for detection of cholera toxin   总被引:2,自引:0,他引:2  
Contamination of food with biological toxins as well as their potential use as weapons of mass destruction has created an urge for rapid and cost effective analytical techniques capable of detecting trace amounts of these toxins. This paper describes the development of a sensitive method for detection of cholera toxin (CT) using a flow-injection capacitive immunosensor based on self-assembled monolayers. The sensing surface consists of monoclonal antibodies against the B subunit of CT (anti-CT), immobilized on a gold transducer. Experimental results show that the immunosensor responded linearly to CT concentrations in the range from 1.0 × 10−13 to 1.0 × 10−10 M under optimized conditions. The limit of detection (LOD) was 1.0 × 10−14 M. Two more analytical methods were employed for detection of CT using the same antibody namely, sandwich ELISA and surface plasmon resonance (SPR)-based immunosensor. The former had an LOD of 1.2 × 10−12 M and a working range from 3.7 × 10−11 to 2.9 × 10−10 M whereas, the later had an LOD of 1.0 × 10−11 M and a linearity ranging from 1.0 × 10−9 to 1.0 × 10−6 M. These results demonstrate that the developed capacitive immunosensor system has a higher sensitivity than the other two techniques. The binding affinity of CT to the immobilized anti-CT was determined using the SPR-based immunosensor and an association constant (KA) of 1.4 × 109 M−1 was estimated.  相似文献   

6.
A novel bimediator amperometric sensor is fabricated for the first time by surface modification of graphite electrode with thionine (TH) and nickel hexacyanoferrate (NiHCF). The electrochemical behavior of the TH/NiHCF bimediator modified electrode was characterized by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The TH/NiHCF bimediator modified electrode exhibited a pair of distinct redox peaks for NiHCF and TH with formal potentials of 0.33 V and −0.27 V vs. SCE at a scan rate of 50 mV s−1 in 0.1 M NaNO3 and 0.1 M NH4NO3 respectively. The electrocatalytic activity of the bimediator modified electrode towards oxidation of gallic acid with NiHCF and reduction of hydrogen peroxide with TH was evaluated and it was observed that the modified electrode showed an electrocatalytic activity towards the oxidation of gallic acid in the concentration range of 4.99 × 10−6–1.20 × 10−3 M with a detection limit of 1.66 × 10−6 M (S/N = 3) and reduction of H2O2 in the concentration range of 1.67 × 10−6–1.11 × 10−3 M with a detection limit of 5.57 × 10−7 M (S/N = 3). The bimediator modified electrode was found to exhibit good stability and reproducibility.  相似文献   

7.
An electrochemiluminescent cholesterol disposable biosensor has been prepared by the formation of assembled layers on gold screen-printed cells. The detection layer is based on the electro-formation of new luminol copolymers with different synthesized biotinylated pyrroles prepared by click-chemistry, offering a new transduction layer with new electroluminescent properties on biosensors. The electrochemiluminescence (ECL) luminol copolymers are electroformed by cyclic voltammetry (five cycles) at pH 7.0 uses a10−3 M biotinylated pyrrole–luminol ratio of 1:10 in PBS buffer. With respect to the recognition layer, cholesterol oxidase was biotinylated by incubation with biotin vinyl sulfone, and immobilized on the copolymer by avidin–biotin interaction. The analytical signal of the biosensor is the ECL enzymatic initial rate working in chronoamperometric mode at 0.5 V excitation potential with 10 s between pulses at pH 9.5. The disposable device offers a cholesterol linear range from 1.5 × 10−5 M to 8.0 × 10−4 M with a limit of detection of 1.47 × 10−5 M and accuracy of 7.9% for 9.0 × 10−5 M and 14.1% for 2.0 × 10−4 M, (n = 5). Satisfactory results were obtained for cholesterol determination in serum samples compared to a reference procedure.  相似文献   

8.
Imipenem shows a fast chemical conversion to a more stable imin form (identical to that of biochemical dehydropeptidase degradation) in aqueous solutions and stabilizing agents used avoid its electrochemical study and determination.The aim of this work is the proposal of urea as stabilizing agent which allows the electrochemical study of imipenem and the proposal of electrochemical methods for the determination of imipenem and its primary metabolite (M1) in human urine samples. Electrochemical studies were realized in phosphate buffer solutions over pH range 1.5-8.0 using differential-pulse polarography, DC-tast polarography, cyclic voltammetry and adsorptive stripping voltammetry. In acidic media, a non-reversible diffusion-controlled reduction involving a two steps mechanism which involves one electron and one proton in the first step and two electrons and two protons in the second step occurs and the mechanism for the reduction was suggested.A differential-pulse polarographic method for the determination of imipenem in the concentration range 3.2 × 10−6 to 2 × 10−5 M (0.95-3.4 mg/L) and its primary metabolite in the concentration range 1.4 × 10−6 to 10−4 M (0.43-26.1 mg/L) with detection limits of 9.6 × 10−7 M (0.28 μg/L imipenem) and 4.3 × 10−7 M (0.14 μg/L M1) was proposed. Also, a method based on controlled adsorptive pre-concentration of imipenem on the hanging mercury drop electrode followed by voltammetric measure, allows imipenem determination in the concentration range 1.8 × 10−8 to 1.2 × 10−6 M (5.42-347 μg/L) with a detection limit of 5.4 × 10−9 M (1.63 μg/L). The proposed methods have been used for the direct determination of the analytes in a pharmaceutical formulation and human urine.  相似文献   

9.
The immobilization of tyrosinase onto glutaraldehyde activated streptavidine magnetic particles and subsequent retention onto a magnetized carbon paste electrode for the amperometric assay of tyrosinase inhibitors is described. Tyrosine was used as substrate as it is the first substrate in the melanogenesis process. The sensing mode is based on monitoring the decrease of the amperometric signal corresponding to the electrochemical reduction of dopaquinone enzymatically generated. This current decrease is due to the presence of inhibitors acting directly on the enzyme or inhibitors acting on the product of the enzymatic reaction, i.e. dopaquinone. The methodology is designed for the evaluation of the inhibitory potency of the most frequently used active substances in cosmetic marketed products against hyperpigmentation such as kojic acid, azelaic acid and benzoic acid. These compounds bind to the tyrosinase active center. Ascorbic acid is also investigated as it interrupts the synthesis pathway of melanin by reducing the melanin intermediate dopaquinone back to l-dopa. By comparing the obtained IC50, under the same experimental conditions, the order of their inhibitory potency was: kojic acid (IC50 = 3.7 × 10−6 M, Ki = 8.6 × 10−7 M), ascorbic acid (IC50 = 1.2 × 10−5 M), benzoic acid (IC50 = 7.2 × 10−5 M, Ki = 2.0 × 10−5 M) and azelaic acid (IC50 = 1.3 × 10−4 M, Ki = 4.2 × 10−5 M) in close agreement with literature spectrophotometric inhibition data using the soluble tyrosinase.  相似文献   

10.
Carbon nanoparticles (CNPs) and halloysite nanoclay (HNC) modified carbon paste electrode (HNC–CNP–CPE) was developed for the determination of methyl parathion (MP) and ethyl parathion (EP). The electrochemical behavior of these molecules was investigated employing cyclic voltammetry (CV), chronocoulometry (CC), electrochemical impedance spectroscopy (EIS) and potentiometric stripping analysis (PSA). After optimization of analytical conditions employing this electrode at pH 5.0 in acetate buffer (0.1 M), the peak currents were found to vary linearly with its concentration in the range of 1.55 × 10−9 to 3.67 × 10−6 M and 1.21 × 10−9 to 4.92 × 10−6 M for MP and EP, respectively. The detection limits (S/N = 3) of 4.70 × 10−10 M and 3.67 × 10−10 M were obtained for MP and EP, respectively, using PSA. The prepared modified electrode showed several advantages such as simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. The proposed method was employed for the determination of MP and EP in fruits, vegetables, water and soil samples.  相似文献   

11.
Owing to its high affinity with phosphate, Zr(IV) can induce the aggregation of adenosine 5′-triphosphate (ATP)-stabilized AuNPs, leading to the change of surface plasmon resonance (SPR) absorption spectra and color of ATP-stabilized AuNP solutions. Based on these phenomena, visual and SPR sensors for Zr(IV) have been developed for the first time. The A660 nm/A518 nm values of ATP-stabilized AuNPs in SPR absorption spectra increase linearly with the concentrations of Zr(IV) from 0.5 μM to 100 μM (r = 0.9971) with a detection limit of 95 nM. A visual Zr(IV) detection is achieved with a detection limit of 30 μM. The sensor shows excellent selectivity against other metal ions, such as Cu2+, Fe3+, Cd2+, and Pb2+. The recoveries for the detection of 5 μM, 10 μM, 25 μM and 75 μM Zr(IV) in lake water samples are 96.0%, 97.0%, 95.6% and 102.4%, respectively. The recoveries of the proposed SPR method are comparable with those of ICP-OES method.  相似文献   

12.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

13.
J. Ballesta Claver 《Talanta》2009,79(2):499-506
This paper presents an application of chromatographic separation based on an ultra-short monolithic column and chemiluminescent detection in an FIA type instrument manifold for the determination of four paraben mixtures: methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP). The separation is achieved in 150 s using two consecutive carriers: first 12% ACN:water that changes 75 s after injection to 27% ACN:water. The detection is based on the oxidation of the hydrolysis product of parabens, p-hydroxybenzoic acid, with Ce(IV) in the presence of Rhodamine 6G which evokes chemiluminescence of sufficient intensity to enable a sensitive determination of these species. After optimization of the variables involved, the analytical method is characterized, displaying the following values for concentration ranges, detection limits and precision, as relative standard deviation at low concentration (0.15 mg l−1)—MP: from 9.9 × 10−7 to 3.3 × 10−4 M; 1.9 × 10−8; 5.6%; EP: from 9.0 × 10−7 to 3.3 × 10−4 M; 2.8 × 10−8; 3.5%; PP: from 8.3 × 10−7 to 9.9 × 10−5 M; 2.3 × 10−8; 4.2%; and BP: from 7.7 × 10−7 to 9.9 × 10−5 M; 4.2 × 10−8 M; 6.2%. The method was applied and validated satisfactorily for the determination of these parabens in cosmetic samples, comparing the results against a liquid chromatography reference method.  相似文献   

14.
This paper describes a copper selective optical chemical sensor based on static quenching of the fluorescence of 2-(2′-hydroxyphenyl)benzoxazole entrapped in a poly(vinyl chloride) (PVC) membrane. The effect of the composition of the sensing membrane was studied, and experimental conditions were optimized. The sensors exhibit stable response over the concentration range from 4.0 × 10−8 M to 5.0 × 10−5 M Cu2+ at pH 4.0-6.5, and a high selectivity. The response time for Cu2+ with concentration ≤5 × 10−6 M is less than 7 min. The optode can be regenerated using 0.1 M HCl and acetate buffer solution. The sensor has been used for direct measurement of copper content in river water samples with a relative error less than 4% with reference to that obtained by atomic absorption spectrometry.  相似文献   

15.
Screen-printed electrodes modified with carbon paste that consisted of graphite powder dispersed in ionic liquids (IL) were used for the electrochemical determination of dopamine, adrenaline and dobutamine in aqueous solutions by means of cyclic voltammetry. The IL plays a dual role in modifying compositions, acting both as a binder and chemical modifier (ion-exchanger); ion-exchange analyte pre-concentration increases analytical signal and improves the sensitivity. Calibration graphs are linear in concentration range 3.9 × 10−6 to 1.0 × 10−4 M (dopamine), 2.9 × 10−7 to 1.0 × 10−4 M (adrenaline) and 1.7 × 10−7 to 1.0 × 10−4 M (dobutamine); detection limits are (1.2 ± 0.1) × 10−6, (1.3 ± 0.1) × 10−7 and (5.3 ± 0.1) × 10−8 M, respectively. Using an additive of Co (III) tetrakis-(tert-butyl)-phthalocyanine leads to the increase of signal and lowering detection limit. Some practical advises concerning both the sensor design and selectivity of catecholamine determination are provided.  相似文献   

16.
Multiplex electrochemical detection of two DNA target sequences in one sample using enzyme-functionalized Au nanoparticles (AuNPs) as catalytic labels for was proposed. This DNA sensor was fabricated using a “sandwich” detection strategy, involving two kinds of capture probes DNA immobilized on glassy carbon electrode (GCE), and hybridization with target DNA sequences, which further hybridized with the reporter DNA loaded on the AuNPs. The AuNP contained two kinds of DNA sequences, one was complementary to the target DNA, while the other was noncomplementary to the target. The noncomplementary sequences were linked with horseradish peroxidase (HRP) and alkaline phosphatase (ALP), respectively. Enhanced detection sensitivity was obtained where the AuNPs carriers increased the amount of enzyme molecules per hybridization. Electrochemical signals were generated from the enzymatic products produced from the substrates catalyzed by HRP and ALP. Under optimal conditions, a 33-mer sequence could be quantified over the ranges from 1.5 × 10−13 to 5.0 × 10−12 M with a detection limit of 1.0 × 10−13 M using HRP-AuNP as labels, and a 33-mer sequence could be quantified over the ranges from 4.5 × 10−11 M to 1.0 × 10−9 M with a detection limit of 1.2 × 10−11 M using ALP-AuNP as labels.  相似文献   

17.
The guanidinium salt of the new heteropolymolybdate 11-molybdobismuthophosphate Gua6PBiMo11O40 (11-MBP) was synthesized, characterized and used as a reagent for batch spectrophotometric (SP) and sequential injection determination of ascorbic acid (AsA). When compared to other Keggin's heteropolyanions, the reduction of 11-MBP with AsA is both fast and maximal within a pH range of 1.6-2.0. The stoichiometry of the reaction was determined using molar ratio and continuous variation methods and was shown to be 1:1. The molar absorptivity of the reduced form of 11-MBP was 6.0 × 103 L mol−1 cm−1 at 720 nm. The reaction is also specific for AsA. Only cysteine, hydroquinone and hydroxyacids were found to interfere with the reaction, while no interference was observed with the common reducing agents, including reducing sugars, catecholamines, nitrite, sulfite and iron(II) ions. Batch SP and sequential injection analysis (SIA) systems were developed for the determination of AsA, with calibration ranges of the SP methods at 2 × 10−6-8 × 10−5 M for a 10 mm cell and 5 × 10−7-3 × 10−5 M for a 50 mm cell and a limit of detection at 3 × 10−7 M. The linear range of the SIA method was 6 × 10−6-5 × 10−4 M, with a detection limit of 2 × 10−6 M and a sample throughput of 15 h−1. The proposed methods were successfully used for the determination of AsA in both pharmaceuticals and fruit juices, and the results were consistent with those provided by the 2,6-dichlorophenolindophenol method.  相似文献   

18.
Facilitated transport of Am(III) in nitric acid medium using tetra(2-ethyl hexyl) diglycolamide (TEHDGA) in n-dodecane as carrier was studied. It was aimed at finding out the physico-chemical model for the transport of Am(III) using TEHDGA/n-dodecane as carrier under various experimental parameters like feed acidity, carrier concentration, varying strippant, varying membrane pore size, etc. The feed acidity and carrier concentrations were varied from 1 M to 6 M HNO3 and 0.1 M to 0.3 M TEHDGA/n-dodecane, respectively. The transport of Am(III) increased with increase in feed acidity and carrier concentration reaching maximum at 3 M HNO3 and 0.2 M TEHDGA/n-dodecane, respectively. Several stripping agents were tested and 0.1 M HNO3 was found to be the most suitable stripping agent for this system. Almost quantitative transport of Am(III) was observed at about 180 min with feed acidity of 3 M HNO3, 0.1 M HNO3 as strippant and 0.2 M TEHDGA/n-dodecane as carrier. The pore size of the membrane support was varied from 0.20 μm to 5 μm and the permeation coefficient increased with increase in pore size up to 0.45 μm (2.43 × 10−3 cm/s), and then decreased with further increase in pore size. The plot between permeation coefficient vs. (membrane thickness)−1 was linear which showed that the Am(III) transport was membrane diffusion limited. The membrane diffusion coefficient calculated from the graph was found to be 1.27 × 10−6 cm2/s and its theoretical value was 1.22 × 10−6 cm2/s. The stability of the carrier against leaching out of the membrane support as well as the integrity of membrane support was studied over a period of 30 days and was found to be satisfactory within the studied time period.  相似文献   

19.
Fakhari AR  Khorrami AR  Naeimi H 《Talanta》2005,66(4):813-817
A novel sensitive chromogenic reagent, N,N′-bis(3-methylsalicylidene)-ortho-phenylene diamine (MSOPD), has been synthesized and used in the spectrophotometric determination of nickel. At pH 8, MSOPD can react with nickel ion at room temperature to form a 1:1 complex. The apparent molar absorptivity is 9.5 × 104 l mol−1 cm−1 at 430 nm. Beer's low is obeyed over the range 0-1.0 × 10−5 M of nickel with a detection limit of 1.36 × 10−8 M. The relative standard deviation for measurement of 3.41 × 10−6 M nickel is 1.3% (n = 10). The method has successfully been applied to determination of trace amounts of nickel in some natural food samples.  相似文献   

20.
A chemically modified carbon paste electrode with 3,4-tetra pyridinoporphirazinatocobalt(II) (Co(3,4 tppa) was applied to the determination of free cyanide ion. The electrode has a linear range between 1.5 × 10−5 M and 1.0 × 10−2 M with a Nernstian slope of 60 ± 1.5 mV/decade and its detection limit is 9 × 10−6 M. The response time of electrode is 5 min. The proposed electrode was applied successfully for the determination of cyanide in commercially available spring water. Some anions, such as SCN, I, Cl, Br and oxalate that are usually serious interfering species for most of cyanide selective electrodes, did not have any interfering effect for this proposed electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号