首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this study, through the extension of an one-dimensional, dissimilarly charged protrusions surface model set up in our previous work, a novel dissimilarly charged protrusion array (DCPA) model immersed in an electrolyte solution, which could simulate realistically both the surface morphology and the surface charged condition profoundly concerned on a biological cell membrane, or on the surface of a micro-scale, modified particle used in biomedical engineering and water treatment, is proposed. Considering the condition of small protrusions, the electrical potential field due to the electrical double layer (EDL) on DCPA model is solved semi-analytically using both the double Fourier series and the perturbation method. The analysis from the numerical result reveals that, a small, dissimilarly charged protrusion can lead to a steep variation in the local EDL configuration, especially compared with that in the condition when the charged surface is taken roughly as a flat surface using a lumped, mean surface charge density.  相似文献   

2.
The electrophoresis of a charge-regulated spherical particle at an arbitrary position in a charged spherical cavity is modeled under conditions of low surface potential (<25 mV) and weak applied electric field (<25 kV/m). The charged cavity allows us to simulate the effect of electroosmotic flow, and the charge-regulated nature of the particle permits us to model various types of surface. The problem studied previously is reanalyzed based on a more rigorous electric force formula. In particular, the influences of various types of charged conditions on the electrophoretic behavior of a particle and the roles of all the relevant forces acting on the particle are examined in detail. Several new results are found. For instance, the mobility of a particle has a local minimum as the thickness of a double layer varies, which is not seen in the cases where the surface of a particle is maintained at a constant potential and at a constant charge density.  相似文献   

3.
The effect of the presence of a charged boundary on the electrophoretic behavior of a particle is investigated by considering a sphere at an arbitrary position in a spherical cavity under conditions of low surface potential and weak applied electric field. Previous analyses are modified by using a more realistic electrostatic force formula and several interesting results, which are not reported in the literature, are observed. We show that the qualitative behavior of a particle depends largely on its position, its size relative to that of a cavity, and the thickness of the electric double layer. In general, the presence of a cavity has the effect of increasing the conventional hydrodynamic drag on a particle through a nonslip condition on the former. Also, a decrease in the thickness of the double layer surrounding a sphere has the effect of increasing the electrostatic force acting on its surface so that its mobility increases. However, this may not be the case when an uncharged particle in placed in a positively charged cavity, where the electroosmotic flow plays a role; for example, the mobility can exhibit a local maximum and the direction of electrophoresis can change.  相似文献   

4.
5.
The effect of polydispersity in the macromolecule size and surface potential on the depletion attraction and structural repulsion between two charged spherical particles in a solution of nonadsorbing charged spherical macromolecules was investigated using a modified form of the force-balance model of J. Y. Walz and A. Sharma [J. Colloid Interface Sci. 168, 495 (1994)]. The distribution of sizes and potentials was described by a log-normal distribution with values of the coefficient of variation (CV) as large as 60%. Comparisons with the case of purely monodisperse macromolecules were made under the condition of either constant macromolecule number density, rho(infinity), or constant volume fraction, φ. For purely hard spheres, polydispersity increases the depletion attraction at constant rho(infinity) but decreases the interaction at constant φ. A simple scaling analysis is used to show that these trends are true for any arbitrary distribution of macromolecule size. Surface charge is found to amplify the effect of polydispersity at constant φ but actually negates the effect at constant rho(infinity). The repulsive structural contribution, arising from the interaction between the macromolecules themselves, is significantly decreased by polydispersity except for the case of charged macromolecules at constant rho(infinity), where the effect is relatively small. Finally, polydispersity in the macromolecule surface potential (no polydispersity in size) has only a minor effect on both the depletion attraction and structural repulsion, even for CV values as large as 60%. Copyright 2000 Academic Press.  相似文献   

6.
The influence of a charged boundary on the electrophoretic behavior of an entity in a non-Newtonian fluid is studied by considering a sphere at an arbitrary position in a spherical cavity filled with a Carreau fluid under the conditions of low surface potential and weak applied electric field. The dependence of the mobility of a sphere on its position in a cavity, the size of a cavity, the thickness of a double layer, and the nature of a fluid is investigated. In addition to the fact that the effect of shear-thinning is advantageous to the movement of a sphere, several other interesting results are also observed. For instance, if an uncharged sphere is in a positively charged cavity, where the electroosmotic flow and the induced charge on the sphere surface play a role, the effect of shear-thinning is important only if the thickness of the double layer is either sufficiently thin or sufficiently thick. However, this might not be the case if a positively charged sphere is in an uncharged cavity.  相似文献   

7.
Nanometer-sized clusters of copper have been produced in a hollow cathode sputtering source and deposited on SiOx. Halo-like structures consisting of micrometer sized protrusions in the silicon oxide surface surrounded by thin rings of smaller particles are observed. The area in between seems to be depleted of particles. We propose that the halo-like structures are a result of electrostatic forces acting between the incoming charged clusters and charged regions on the surface. A simple computer simulation supports this suggestion.  相似文献   

8.
Recent advances in material science and technology yield not only various kinds of nano- and sub-micro-scaled particles but also particles of various charged conditions such as Janus particles. The characterization of these particles can be challenging because conventional electrophoresis theory is usually based on drastic assumptions that are unable to realistically describe the actual situation. In this study, the influence of the nonuniform charged conditions on the surface of a particle at an arbitrary level of surface potential and double layer thickness on its electrophoretic behavior is investigated for the first time in the literature taking account of the effect of double-layer polarization. Several important results are observed. For instance, for the same averaged surface potential, the mobility of a nonuniformly charged particle is generally smaller than that of a uniformly charged particle, and the difference between the two depends upon the thickness of double layer. This implies that using the conventional electrophoresis theory may result in appreciable deviation, which can be on the order of ca. 20%. In addition, the nonuniform surface charge can yield double vortex in the vicinity of a particle by breaking the symmetric of the flow field, which has potential applications in mixing and/or regulating the medium confined in a submicrometer-sized space, where conventional mixing devices are inapplicable.  相似文献   

9.
In this paper we investigate the electric interaction between a charged particle and a surface in which the charged ions are capable of moving in response to the electric potential disturbance caused by the approach of the charged particle. Such surfaces include ionic surfactants distributed in air-water interface and charged lipids in bilayer membranes. On the basis of the mean field theory, the free energy of the system, which includes the electrostatic internal energy and the entropy of the mobile ions and surface ions, can be written down. The surface charge-potential relation is then derived by the calculus of variation. When the potential disturbance is small enough, a linear charge regulation model is obtained. The interaction energy associated with a long rod parallel to the interface is studied and an analytical expression is obtained. When a rod approaches an oppositely charged surface, the interaction can change from attraction to repulsion, depending on the ratio of the characteristic regulation length to the Debye length. At low surface charge density, the surface behaves as under the condition of constant charge density and acts as that of constant potential for high enough charge density. Copyright 2001 Academic Press.  相似文献   

10.
Recently, it has been revealed that a semiflexible polyelectrolyte chain can form a partially folded conformation stably as a result of an electrostatic interaction. Interestingly, there are cases where the appearance of this structure requires a high-salt condition of a solution. In order to solve this problem, we consider the double equilibrium of the formation of loops and their aggregation on a single-chain polymer. First, an aggregate with a typical surface energy is examined as a test case. The basic nature of the folding transition is discussed with regard to the chemical potential of loop structures. Next, we consider a charged aggregate for which the interior is completely neutralized by counter ions. In this model, a partially folded chain appears with a high-salt condition. Based on this model, screened interactions between surface charges and a toroidal shape of a folded structure are considered essential factors bihind this phenomenon.  相似文献   

11.
The sedimentation in a homogeneous suspension of charged spherical particles with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model. Overlap of the double layers of adjacent particles is allowed, and the polarization effect in the double layer surrounding each particle is considered. The electrokinetic equations that govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. An analytical expression for the settling velocity of the charged sphere in closed form is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged spheres is also derived by using the requirement of zero net electric current. Our results demonstrate that the effects of overlapping double layers are quite significant, even for the case of thin double layers. Copyright 2000 Academic Press.  相似文献   

12.
If a vesicle is a better model of a membrane in the context of the hydrophobic effect, then from the charge distribution point of view, a catanionic micelle is a closer model to a biomembrane. We have prepared and characterized two different types of catanionic micelles of sodium dodecyl sulfate (SDS) and cetyl N,N,N-trimethylammonium bromide (CTAB) having different surface charge ratios using optical spectroscopy and transmission electron microscopy. The average size of both types of mixed micelles was found to be much larger than that of micelles containing uniformly charged headgroups. Catanionic micelles containing higher concentrations of positively charged headgroups (CTAB) are larger in size, less compact, and more polar compared to the micelles containing higher concentrations of negatively charged headgroups (SDS). We have used these catanionic micelles as membrane mimetic systems to understand the interaction of piroxicam, a nonsteroidal anti-inflammatory drug (NSAID) of the oxicam group, with biomembranes. In continuation of our work on membrane mimetic systems, we have used spectral properties of the drug itself to understand the effect of the presence of mixed charges on the micellar surface in guiding the interaction of catanionic micelles with piroxicam. Our earlier studies of the interaction of piroxicam with micelles having uniform surface charges have shown that the charge on the micellar surface not only dictates which prototropic form of the drug will be incorporated in the micelles but also induces a switch-over between different prototropic forms of piroxicam. The equilibrium of this switch-over is extremely sensitive to the environment. In this study, we demonstrate how even small changes in the electrostatic forces obtained by doping the uniformly charged surface of the micelles with oppositely charged headgroups (as in catanionic micelles) are capable of fine-tuning this equilibrium. This implies that the surface charge of biomembranes, which are quite diverse in vivo, might play a significant role in selecting a particular form of the drug to be presented to its targets.  相似文献   

13.
The steady diffusioosmotic flows of an electrolyte solution along a charged plane wall and in a capillary channel between two identical parallel charged plates generated by an imposed tangential concentration gradient are theoretically investigated. The plane walls may have either a constant surface potential or a constant surface charge density. The electrical double layers adjacent to the charged walls may have an arbitrary thickness and their electrostatic potential distributions are determined by the Poisson-Boltzmann equation. Solving a modified Navier-Stokes equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the tangential direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the lateral position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the electrolyte solution, and other relevant factors. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field and the relaxation effect in the double layer on the diffusioosmotic flow are found to be very significant.  相似文献   

14.
A model that describes the diffusive and electrophoretic mass transport of the cation and anion species of a buffer electrolyte and of a charged adsorbate in the liquid film surrounding nonporous adsorbent particles in a finite bath adsorption system, in which adsorption of the charged adsorbate onto the charged surface of the nonporous particles occurs, is constructed and solved. The dynamic behavior of the mechanisms of this model explicitly demonstrates (a) the interplay between the diffusive and electrophoretic molar fluxes of the charged adsorbate and of the species of the buffer electrolyte in the liquid film surrounding the nonporous adsorbent particles, (b) the significant effect that the functioning of the electrical double layer has on the transport of the charged species and on the adsorption of the charged adsorbate, and (c) the substantial effect that the dynamic behavior of the surface charge density has on the functioning of the electrical double layer. It is found that at equilibrium, the value of the concentration of the charged adsorbate in the fluid layer adjacent to the surface of the adsorbent particles is significantly greater than the value of the concentration of the adsorbate in the finite bath, while, of course, the net molar flux of the charged adsorbate in the liquid film is equal to zero at equilibrium. This result is very different than that obtained from the conventional model that is currently used to describe the transport of a charged adsorbate in the liquid film for systems involving the adsorption of a charged adsorbate onto the charged surface of nonporous adsorbent particles; the conventional model (i) does not consider the existence of an electrical double layer, (ii) assumes that the transport of the charged adsorbate occurs only by diffusion in the liquid film, and (iii) causes at equilibrium the value of the charged adsorbate in the liquid layer adjacent to the surface of the particles to become equal to the value of the concentration of the charged adsorbate in the liquid of the finite bath. Furthermore, it was found that a maximum can occur in the dynamic behavior of the concentration of the adsorbate in the adsorbed phase when the value of the free molecular diffusion coefficient of the adsorbate is relatively large, because the increased magnitude of the synergistic interplay between the diffusive and electrophoretic molar fluxes of the adsorbate in the liquid film allows the adsorbate to accumulate (to be entrapped) in the liquid layer adjacent to the surface of the adsorbent particles faster than the concentrations of the electrolyte species, whose net molar fluxes are significantly hindered due to their opposing diffusive and electrophoretic molar fluxes, can adjust to account for the change in the surface charge density of the particles that arises from the adsorption of the charged adsorbate. The results presented in this work also have significant implications in finite bath adsorption systems involving the adsorption of a charged adsorbate onto the surface of the pores of charged porous adsorbent particles, because the diffusion and the electrophoretic migration of the charged solutes (cations, anions, and charged adsorbate) in the pores of the adsorbent particles will depend on the dynamic concentration profiles of the charged solutes in the liquid film surrounding the charged porous adsorbent particles. The results of the present work are also used to illustrate how the functioning of the electrical double layer could contribute to the development of inner radial humps (concentration rings) in the concentration of the adsorbate in the adsorbed phase of charged porous adsorbent particles.  相似文献   

15.
The sedimentation behavior of a concentrated suspension of charged liquid drops is analyzed theoretically at arbitrary surface potential and arbitrary double-layer thickness; that is, the effects of double-layer polarization and double-layer overlapping are taken into account. Kuwabara's unit cell model is employed to model the suspension system, and a pseudospectral method based on the Chebyshev polynomial is adopted to solve the governing electrokinetic equations numerically. Several interesting phenomena, which are of significant influence if the internal flow inside a liquid drop is taken into account, are observed. Key factors are examined such as the thickness of the electric double layer, the magnitude of the surface potential, the volume fraction of liquid drops, and the viscosity of the internal fluid. The results presented here add another dimension to the previous studies, which include concentrated suspensions of rigid particles and mercury drops under low zeta potential, with the consideration of the internal flow of liquid drops and double-layer polarization, characterized by its viscosity and the zeta potential respectively. It is found, among other things, that the smaller the viscosity of the internal fluid is, the higher the sedimentation velocity of liquid drops. The higher the zeta potential is, the larger the decrease in sedimentation velocity. In particular, the sedimentation velocity of an inviscid drop (gas bubble) is about three times higher than that of a rigid one. The decrease in sedimentation velocity resulting from the effect of double-layer polarization achieves about 50% if the zeta potential is sufficiently high.  相似文献   

16.
The effect of polydispersity in macromolecule size or surface potential on the depletion interaction between a spherical silica particle and a silica flat in solutions containing two different types of nonadsorbing charged spherical macromolecules was studied with an atomic force microscope (AFM). The macromolecules used here were negatively charged nanospheres of either polystyrene or silica. To investigate the effect of size polydispersity, experiments were performed under the condition of either constant macromolecule number density or constant volume fraction as the relative proportions of smaller and larger polystyrene nanospheres in the suspension were varied. Similarly, for the experiments with surface potential polydispersity, the suspensions contained varying fractions of more highly charged (polystyrene) and less highly charged (Ludox silica) nanospheres at constant number density. The experimental results were compared to the predictions of the modified force-balance model of Piech and Walz and semiquantitative agreement was found. In particular, the maximum attraction and repulsion observed in the measured force profiles were found to agree with the predicted trends as the makeup of the macromolecules was varied. The trend in the maximum attraction was also consistent with predictions made using a simple "scaling" analysis derived using the equation for hard-sphere interactions.  相似文献   

17.
To calculate the electrostatic interaction between a charged sphere and a charged surface under the condition of constant charge density on the two surfaces is difficult. The theory presented in this paper provides an approximate solution to this problem when the charge of the two bodies is of opposite sign. The proposed calculation model is based on a solution of the Poisson–Boltzmann (P–B) equation for two oppositely charged planar surfaces to which the approximate integration procedure developed by Deryaguin is applied. The obtained expression is rather simple and is in good agreement with retention data for a protein in ion exchange chromatography. The developed model is physically more sound than the previously developed ‘slab’ model for protein retention. Under the experimental conditions of ion exchange chromatography of proteins, the two models give comparable numerical values for the ionic strength dependence of retention.  相似文献   

18.
The boundary effect on electrophoresis is investigated by considering a spherical particle at an arbitrary position in a spherical cavity. Our previous analysis is extended to the case where the effect of double-layer polarization can be significant. Also, the effect of a charged boundary, which yields an electroosmotic flow and a pressure gradient, thereby making the problem under consideration more complicated, is investigated. The influences of the level of the surface potential, the thickness of double layer, the relative size of a sphere, and its position in a cavity on the electrophoretic behavior of the sphere are discussed. Some results that are of practical significance are observed. For example, if a positively charged sphere is placed in an uncharged cavity, its mobility may have a local minimum as the thickness of the double layer varies. If an uncharged sphere is placed in a positively charged cavity, the mobility may have a local minimum as the position of the sphere varies. Also, if the size of a sphere is fixed, its mobility may have a local minimum as the size of a cavity varies. These provide useful information for the design of an electrophoresis apparatus.  相似文献   

19.
We have studied the effect of the pH and surface charge of mica on the adsorption of the positively charged weak polyelectrolyte (PE) poly(2-vinylpyridine) (P2VP) using atomic force microscopy (AFM) single-molecule experiments. These AFM experiments were performed in situ directly under aqueous media. If the mica's surface and the PE are oppositely charged (pH > 3), the PE forms a flat adsorbed layer of two-dimensionally (2D) equilibrated self-avoiding random walk coils. The adsorbed layer's structure remains almost unchanged if the pH is decreased to pH 3 (the mica's surface is weakly charged). At pH 2 (the mica surface is decorated by spots of different electrical charges), the polyelectrolyte chains take the form of a 2D compressed coil. In this pH range, at an increased P2VP concentration in solution, the PE segments preferentially adsorb onto the top of previously adsorbed segments, rather than onto an unoccupied surface. We explain this behavior as being caused by the heterogeneous character of the charged surface and the competitive adsorption of hydronium ions. The further increase of polymer concentration results in a complete coverage of the mica substrate and the charge overcompensation by P2VP chains adsorbed on the similarly charged substrate, due to van der Waals forces.  相似文献   

20.
The diffusiophoresis in a homogeneous suspension of identical dielectric spheres with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a constant imposed concentration gradient is analytically studied. The effects of particle interactions (or particle volume fraction) are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the ionic concentration distributions, the electrostatic potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the diffusiophoretic velocity of the dielectric sphere in closed form correct to the second order of its surface charge density or zeta potential are obtained from a balance between its electrostatic and hydrodynamic forces. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号