首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
关丽  张晓远  孙福强  姜月  钟一平  刘平 《化学进展》2015,27(10):1435-1447
齐聚噻吩及其衍生物具有良好的环境稳定性和优异的光电性能,是一类具有良好发展前景的有机功能材料。本文综述了近年来齐聚噻吩及其衍生物的发展状况,简述了其主要合成方法;根据结构将其分为两大类:一类是不含极性基团或仅含弱极性基团的齐聚噻吩衍生物,另一类是给体-受体型齐聚噻吩衍生物,并讨论了它们作为有机光伏材料的应用。给体-受体型齐聚噻吩衍生物由于分子内的电荷传输作用,其光物理和电化学性能均优于不含极性基团的齐聚噻吩,该类材料在小分子光伏器件中具有最高的光电转换效率(>10%)。文章最后简要分析了影响光伏器件性能的主要因素。  相似文献   

2.
Organic photovoltaic materials and thin-film solar cells   总被引:1,自引:0,他引:1  
Organic photovoltaic materials are of interest for their future applications in solar cells. Compared to inorganic or dye-sensitized solar cells, organic photovoltaic (OPV) cells offer a huge potential for low-cost large-area solar cells because of their low material consumption per area and easy processing. In the last few years, there have seen an unprecedented growth of interest in OPVs with power conversion efficiency of over 5% attainable. However, OPV’s performance is limited by the narrow light absorption, poor charge carries mobility, and low stability of organic materials, all of which confine its large-scale commercial applications. This review will develop a discussion on the OPV device configuration and operational mechanism after an introduction of the general features of OPV materials. Subsequently, the typical progresses in materials development and performance evolution in recent years will be summarized. The future challenges and prospects faced by organic photovoltaics will be discussed. Finally, the innovative strategy on research of molecular design and device optimization will be suggested with the aim for practical application.  相似文献   

3.
硼元素因其独特的价层电子结构——价电子数少于价轨道数,而拥有一个空的p轨道,其三配位化合物既可以和邻近的π体系产生有效共轭,又可以容易地与路易斯碱发生络合,形成四配位化合物。将硼元素引入传统的光电功能分子当中,往往能给整个体系带来独特的光电性质,这已成为新型有机光电功能分子设计的重要思路。本文围绕硼元素的三配位化合物和四配位化合物,从分子设计理念、化合物光电性质、相关器件的结构与效率等方面对含硼有机光电功能分子及其器件的研究进展进行综述,并对其未来发展做出展望。  相似文献   

4.
A decade of significant research has led to the emergence of photovoltaic solar cells based on perovskites that have achieved an exceptionally high-power conversion efficiency of 26.08%. A key breakthrough in perovskite solar cells (PSCs) occurred when solid hole-transporting materials (HTMs) replaced liquid electrolytes in dye-sensitized solar cells (DSSCs), because HTMs play a crucial role in improving photovoltaic performance as well as cell stability. This review is mainly focused on the HTMs that are responsible for hole transport and extraction in PSCs, which is one of the crucial components for efficient devices. Here, we have reviewed small molecular as well as polymeric HTMs that have been reported in the last two years and discussed their performance based on the analysis of their molecular architectures. Finally, we include a perspective on the molecular engineering of new functional HTMs for highly efficient stable PSCs.  相似文献   

5.
有机化合物作为可充电器件的电极材料可以通过自身电活性部位电荷状态的变化来实现本征的氧化还原反应.除了锂离子电池外,有机电极材料还可以用于其他离子半径更大的金属离子电池(如Na+、K+、Mg2+、Zn2+等).有机电极材料还具有诸多优势,比如结构多样、成本低廉、资源丰富和可持续性高,易于通过适当的材料设计调整其性能等,已...  相似文献   

6.
有机、聚合物薄膜电致发光器件的研究进展   总被引:10,自引:0,他引:10  
邱勇  高鸿锦  宋心琦 《化学进展》1996,8(3):221-230
有机、聚合物薄膜电致发光器件是近年来国际上的一个研究热点。与无机材料相比, 有机材料具有更高的发光效率和更宽的发光颜色选择范围, 并且具有容易大面积成膜的优越性。本文介绍了有机、聚合物薄膜电致发光器件的结构和制备、发光机理以及有关材料的选择, 并对该研究领域的最新动态、器件的稳定性问题以及应用前景进行了讨论。  相似文献   

7.
Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid-state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'-bis(1-ethylpropyl)perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), PC71BM=[6,6]-phenyl-C71-butyric acid methyl ester). We varied the PC71BM/EP-PDI weight ratio to investigate the influence of EP-PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP-PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP-PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP-PDI-based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short-circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.  相似文献   

8.
钟渤凡  王世荣  肖殷  李祥高 《化学进展》2015,27(8):986-1001
双极性蓝光荧光材料因其双极传输特性和发光特性,为有机电致发光器件性能提升及结构简化提供了新途径。大多数双极性蓝光荧光材料在结构上符合电子给体-π桥-电子受体(D-π-A),根据电子受体单元,本文将其分为二苯磷/磺酰类、二米基硼类、五元杂环类、六元氮杂环类等,讨论了各类材料结构特点及在器件中的应用性能,对非D-π-A型材料也进行了总结。同时,介绍了热活化延迟荧光特性的双极性蓝光荧光材料的进展情况。最后,对双极性蓝光荧光材料中存在的问题进行了提炼,并展望了其发展前景。  相似文献   

9.
石胜伟  彭俊彪 《化学进展》2007,19(9):1371-1380
有机电双稳态器件(organic electrical bistability devices,OEBDs)具有低成本、易加工、小体积、快响应、低功耗和高存储密度等优点,在未来的信息存储和逻辑电路方面有着非常广阔的应用前景,正受到人们越来越多地的关注。但是有机电双稳态器件的工作原理还没有得到很好地理解,并且工作过程中所涉及的新概念、新理论等基本科学问题以及制备和加工过程中所涉及的新结构、新方法、新技术和新材料还有待进行深入地研究。本文综述了有机电双稳态器件近年来的研究进展,并探讨了它在电开关存储方面的应用前景以及需要解决的问题。  相似文献   

10.
Nowadays, both n-i-p and p-i-n perovskite solar cells (PSCs) device structures are reported to give high performance with photo conversion efficiencies (PCEs) above 20%. The efficiency of the PSCs is fundementally determined by the charge selective contact materials. Hence, by introducing proper contact materials with good charge selectivity, one could potentially reduce interfacial charge recombination as well as increase device performance. In the past few years, copious charge selective contact materials have been proposed. Significant improvements in the corresponding devices were observed and the reported PCEs were close to that of classic Spiro-OMeTAD. This mini-review summarizes the state-of-the-art progress of typical electron/hole selective contact materials for efficient perovskite solar cells and an outlook to their development is made.  相似文献   

11.
本文以低比例的磷光材料作为给体,制备了基于MoOx/C60:x%Ir(ppy)3的有机太阳能电池(OPV)器件.其中,C60为高比例的受体材料,金属配合物Ir(ppy)3为低比例的给体材料,MoOx为阳极缓冲层.通过一系列不同Ir(ppy)3比例的OPV器件对比研究,得出了最优器件结构.研究发现,当Ir(ppy)3比例足够小时,器件表现为肖特基势垒,开路电压(VOC)较大,短路电流(JSC)较小;随着Ir(ppy)3比例的增加,VOC逐渐减少,而JSC逐渐增大;当进一步增加Ir(ppy)3比例时,VOC趋于稳定,JSC开始减小.结果显示,5%Ir(ppy)3比例的器件性能最佳,效率达1.7%.为了使器件效率得到进一步提升,本研究组采用吸收光谱范围比C60更宽的C70作为受体材料,使光电转换效率进一步提升至3.0%.  相似文献   

12.
可拉伸有机电子器件具有高机械稳定性、优异的电学稳定性、低成本和生物兼容性好等优点,是未来电子器件发展的重要方向.功能性可拉伸有机电子器件更是为可穿戴和可植入设备、智能医疗以及软体机器人等新兴高技术领域提供了新的研究思路.本文综述了近年来功能性可拉伸有机电子器件的研究进展,包括场效应、光电、存储以及传感等有机晶体管,发光二极管、交流电致发光、发光电化学电池等有机光电器件,太阳能电池、超级电容器、纳米发电机等有机能源存储与转换器件,压力、应变、触觉、温度、气体等有机传感器,忆阻器、磁存储、仿突触存储等有机存储器,以及其他集成电路系统元件,最后就功能性可拉伸有机电子器件存在的科学问题与未来的发展方向提出了建议.  相似文献   

13.
The continuous microstructure evolution occurring in active layers of polymer-fullerene solar cells is one of the main causes for their device instability. With aim to tackle it, this work developed a new polymerizable fullerene acceptor, [6,6]-phenyl-C61-butyl acrylate (PC61BA). It was found that PC61BA has similar light-absorption properties and HOMO and LUMO energy levels as [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), and can be converted into insoluble oligomers upon heating at 150 °C. Polymer-fullerene solar cells using poly(3-hexylthiophene) (P3HT) as donor and PC61BA as acceptor exhibited an optimized efficiency of 3.54%, the performance comparable to P3HT/PC61BM cells (optimized efficiency: 3.70%). But, the former possess much better thermal stability than the latter owing to aggregation suppression by the polymerized PC61BA. These results indicate that PC61BA, unlike most previous reported, is a unique polymerizable fullerene derivative that can be used alone as acceptor to achieve both efficient and thermally stable polymer solar cells.  相似文献   

14.
A novel hole-transporting material (Q221) is synthesized by introducing benzyl groups onto the 1,1′-bi-2-naphthol central core as edge chains and bis(4-methoxyphenyl)amine-substituted 9H-carbazole as donor groups. A reference molecule (Q222) is prepared with hexyl edge chains. The introduction of edge chains influences their molecular orbital energy levels. Q221-based CH3NH3PbI3 perovskite solar cells with carbon counter electrode exhibit the highest power conversion efficiency of 10.37% at a low doping level of Li-TFSI/TBP (15 mM/100 mM), and that of Q222-based cells is 8.87%. Q221-based cells doping with Li-TFSI/TBP of 15 mM/100 mM shows much better photovoltaic parameters compared to those doping with Li-TFSI/TBP of 30 mM/200 mM, when aged in ambient air of 30% RH without encapsulation. The new binaphthol based hole-transporting materials shows a great potential in fabricating effective perovskite solar cells.  相似文献   

15.
侯林涛  黄飞  曹镛  刘彭义 《化学进展》2007,19(11):1681-1688
有机/聚合物顶发射发光器件可以解决传统底发射发光器件的一系列不足。高性能顶发射发光器件的实现,首先必须优化器件结构,其次对电子注入材料和空穴注入材料提出更高的要求。本文从提高顶发射器件中电子注入和空穴注入方法入手,综述了国内外有机/聚合物顶发射电致发光器件的发展历史,研究现状,最新进展及以后的发展方向。  相似文献   

16.
In the past three decades, dye-sensitized solar cells (DSSCs) have gained increased recognition as a potential substitute for inexpensive photovoltaic (PV) devices, and their maximum efficiency has grown from 7% to 14.3%. Recent developments in DSSCs have attracted a plethora of research activities geared at realizing their full potential. DSSCs have seen a revival as the finest technology for specific applications with unique features such as low-cost, non-toxic, colourful, transparent, ease of fabrication, flexibility, and efficient indoor light operation. Several organic materials are being explored and employed in DSSCs to enhance their performance, robustness, and lower production costs to be viable alternatives in the solar cell markets. This review provides a concise summary of the developments in the field over the past decade, with a special focus on the incorporation of organic materials into DSSCs. It covers all elements of the DSSC technology, including practical approaches and novel materials. Finally, the emerging applications of DSSCs, and their future promise are also discussed.  相似文献   

17.
This study develops a series of titanium oxide electrode‐based N719 dye‐sensitized solar cells (DSSCs) using quaternized ammonium iodide containing main‐chain and star‐shaped polyfluorene (MPF‐E and SPF‐E) electrolyte solutions. The electrochemical impedance and photovoltaic properties of the polyfluorene electrolyte‐based DSSCs were studied and compared to those of the poly(ethylene oxide) (PEO) electrolyte‐based DSSCs. As with the PEO electrolyte‐based DSSCs, the recombination impedance increased with increase in the polymer content for the MPF‐E electrolyte‐based DSSCs, whereas the photovoltaic performance did otherwise. Nevertheless, the reduction in the photovoltaic properties was not significant for the SPF‐E electrolyte‐based DSSCs. The electrochemical impedance and photovoltaic properties of the different polymer‐based DSSCs are also discussed as a function of the polymer concentration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
超薄层在白色有机电致发光器件中的应用   总被引:1,自引:0,他引:1  
以DCJTB为掺杂剂, 以BCP为空穴阻挡层, 研究了两种结构的有机电致发光器件ITO/NPB/BCP/Alq3:DCJTB/Alq3/Al(结构A)和ITO/NPB/BCP/Alq3/Alq3:DCJTB/Alq3/Al(结构B)的电致发光光谱. 实验结果显示, 在结构A器件的电致发光光谱中, 绿光的相对发光强度较弱,增加Alq3层的厚度对绿光的相对发光强度的影响也很小; 而在结构B器件的电致发光光谱中, BCP层与掺杂层(Alq3:DCJTB)之间的Alq3薄层对绿光的相对发光强度影响显著, 用很薄的Alq3层就可以得到强的绿光发射. 进一步改变器件结构, 利用有机超薄层就可以得到稳定的白光器件ITO/NPB(50 nm)/BCP(3 nm)/Alq3(3 nm)/Alq3:DCJTB(1%(w))(5 nm)/Alq3(7 nm)/Al. 随着电压的增加(14-18 V), 该器件的色坐标基本保持在(0.33, 0.37)处不动; 在432 mA·cm-2的电流密度下, 该器件的发光亮度可达11521 cd·m-2.  相似文献   

19.
Two novel copolymers based on squaraine and fluorine units have been synthesized through palladium catalyzed Suzuki coupling reaction and Sonogashira coupling reaction,respectively.The structures and properties of the two copolymers were characterized by FT-IR.NMR,UV-vis absorbance(Abs),gel permeation chromatography(GPC),thermal gravimetric analysis (TGA),differential scanning calorimetry(DSC) and cyclic voltammetry(CV).The solution absorption spectrums of P1 and P2 show two distinct absorption bands,one locates at 300-500 nm and the other at 600-800 nm.The absorption spectrums of P1 and P2 in films are broadened obviously and the spectral responses are extended up to 900 nm.Thermal gravimetric analysis demonstrates that the polymers are stable.Cyclic voltammetry experiment shows that the band gaps of the copolymers are 1.65 eV and 1.67 eV. respectively,suggesting their potential for applications as solar cells materials.  相似文献   

20.
Solar-based desalination or water purification is regarded as one of the promising solutions to global water scarcity as the only energy input is abundant and sustainable solar light. Interfacial solar vapor generation (SVG), which converts natural sunlight into clean water vapor, has attracted extensive research interests due to its high-energy utilization efficiency and simple implementation. With tunable molecular structures and tailorable physical properties, polymers have demonstrated great potential as candidate materials for solar evaporators. In this review, we summarize the recent progress on polymer materials for solar-powered water purification. First, we present functional polymers with highly tunable molecular composition and morphology as high-efficiency solar absorbers. Next, the recent development of various polymeric materials and structural engineering strategies for adequate water supply and efficient thermal management are discussed, along with their excellent desalination and purification performance. Last, we outline the challenges and future directions on the further development of polymer materials for solar water purification technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号