首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Four novel MnII binuclear complexes have been prepared and characterized, namely: [Mn2(TBPHTA)(L)4](ClO4)2 [L = 2,2-bipyridyl (bipy), 1,10-phenanthroline (phen), 4,4-dimethyl-2,2-bipyridyl (Me2bipy) and 5-nitro-1,10-phenanthroline (NO2-phen), respectively], and TBPHTA = the tetrabromophthalate dianion. Based on i.r. spectra, elemental analyses and conductivity measurements, extended tetrabromophthalato-bridged structures consisting of two MnII ions, in which each MnII ion has a distorted octahedral environment, are proposed for these complexes. The temperature dependence of the magnetic susceptibility for [Mn2(TBPHTA)(phen)4] (ClO4)2·H2O was measured over the 4–300 K range and the observed data were successfully simulated by an equation based on the spin Hamiltonian operator ( = -2J 1 2), giving the exchange integral J = -1.22 cm–1. This result indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

2.
Summary Four novel manganese(II) binuclear complexes have been prepared and characterized, namely [Mn2(TCPHTA)(L)4]-(ClO4)2 [where L is 2,2-bipyridyl (bipy), 1,10-phenanthroline (phen), 4,4-dimethyl-2,2-bipyridyl (Me2bipy) or 5-nitro-1,10-phenanthroline (NO2-phen) and TCPHTA is the tetrachlorophthalate dianion]. Based on i.r. spectra, elemental analyses, conductivity measurements, extended tetrachlorophthalato-bridged structures consisting of two manganese(II) ions in which each manganese(II) ion has a distorted octahedral environment are proposed for these structures. The temperature dependence of the magnetic susceptibility for [Mn2(TCPHTA)(phen)4]-(ClO4)2·H2O was measured over the 4–300 K range and the observed data were successfully simulated by an equation based on the spin Hamiltonian operator ( = –2J 1· 2), giving the exchange integralJ = –1.05 cm–1. This result is indication of a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

3.
The copper(II) complexes [Cu2(phen)2(HL1)2] (ClO4)2 (1) and [Cu2(phen)2(HL2)2] (ClO4)2 (2) synthesized from two potentially tridentate ligands N-(2-hydroxybenzyl) propanolamine (H2L1) and N-(5-methyl-2-hydroxybenzyl) propanolamine (H2L2) have centrosymmetric bis(μ2-phenoxo)-bridged dicopper(II) structures. Variable temperature magnetic measurements have revealed the existence of relatively weak antiferromagnetic interactions (1: 2J=−212.5, 2: 2J=−337.0 cm−1) with respect to the bridging angles (1: θ=101.47(18)°, 2: θ=102.79(12)°). The results suggest that the distortion index of the Cu(II) atoms (1: τ=0.73, 2: τ=0.53) may be the major factor governing the spin coupling between the copper(II) centers of these diphenoxo-bridged binuclear complexes. The coordination moieties of complex 1 are connected into a 1D linear structure via intermolecular hydrogen bonds between alkoxyl, amine, and perchlorate groups.  相似文献   

4.
New binuclear copper complexes of tridentate azomethine ligands with various combinations of N, O, and S donor centers were prepared by various procedures, including template synthesis. The magnetochemical data obtained for the range 2-300 K suggest the occurrence of antiferromagnetic coupling in most of these chelates. The only exception is the complex containing N-tosyl and N-ethyl donor fragments, in which the ferromagnetic exchange is observed.  相似文献   

5.
Three binuclear complexes, (VO)2(L)OMe (1), Co2(L)OEt·3/2H2O (2) and Zn2(L)OMe·H2O (3) have been prepared, where H3L is the binucleating ligand, 2,6-diformyl-4-methylphenol di(benzoylhydrazone). The magnetic susceptibilities of (1) and (2) were measured over the 4.2–300 K range and the observed data were fitted to the Bleaney-Bowers equation by the least-squares method, giving the exchange integral 2J = −358.5cm−1 for (1) and 2J = −6.6cm−1 for (2). This procedure indicates the existence of an antiferromagnetic interaction between the metals. TMC 2699  相似文献   

6.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

7.
Three novel complexes, namely, penta‐μ‐acetato‐bis(μ2‐2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)‐μ‐formato‐tetramanganese(II), [Mn4(C13H11ClN3O2)2(C2H3O2)5.168(CHO2)0.832], 1 , hexa‐μ2‐acetato‐bis(μ2‐2‐{[2‐(6‐bromopyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)tetramanganese(II), [Mn4(C13H11BrN3O2)2(C2H3O2)6], 2 , and catena‐poly[[μ2‐acetato‐acetatoaqua(μ2‐2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)dimanganese(II)]‐μ2‐acetato], [Mn2(C13H11ClN3O2)(C2H3O2)3(H2O)]n, 3 , have been synthesized using solvothermal methods. Complexes 1 – 3 were characterized by IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. Complexes 1 and 2 are tetranuclear manganese clusters, while complex 3 has a one‐dimensional network based on tetranuclear Mn4(L1)2(CH3COO)6(H2O)2 building units (L1 is 2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolate). Magnetic studies reveal that complexes 1 – 3 display dominant antiferromagnetic interactions between MnII ions through μ2‐O bridges. In addition, 1 – 3 also display favourable electrochemiluminescence (ECL) properties.  相似文献   

8.
Six new binuclear nickel (II) complexes have been synth-esized and characterized, namely: [Ni2(4X-TP-HA)(L)4](ClO4)2 [L = 1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline (NO2-phen) or 2,2-bipyridyl (bipy)], where 4X-TPHA is the tetrabromoterephthalate dianion (X = Br) or the tetraiodoterephthalate dianion (X = I). Based on i.r. spectra, elemental analyses and conductivity measurements, these complexes are proposed to have terephthalato-bridged structures containing two NiII ions, each in a distorted octahedral environment. The temperature dependences of the magnetic susceptibility for [Ni2(4Br-TPHA)(phen)4]- (ClO4)2·H2O (1) and [Ni2(4I-TPHA)(phen)4]-(ClO4)2·- 2H2O (4) were measured over the 4–300K range and the observed data indicate weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

9.
Summary Manganese(II) complexes of bis(2-benzimidazolylmethyl) ether (DGB), bis(2-benzimidazolylmethyl) sulphide (TGB) and the n-butyl derivative of DGB (BDGB) were prepared and characterised. The solution e.p.r. spectrum of [Mn(TGB)Cl2] in DMF at 143 K is commensurate with an axially distorted monomeric manganese(II) complex, room temperature magnetic moment (6.04 B.M.) per manganese(II) atom being in the range found for other d5 monomeric manganese(II) complexes. The solution e.p.r. spectrum of [Mn(BDGB)Cl2]-2H2O in DMF at 143 K indicates the presence of two equivalent manganese(II) ions coupled by an exchange interaction, fostered by bridging chlorides. Evidence for this is provided by a nearly isotropic 11 line hyperfine structure of 55Mn, with a coupling constant 45 ± 5G. Contact-shifted 1H n.m.r. data also supports an exchange coupled dimeric manganese complex. The room temperature magnetic moment, 5.64 B.M., per manganese(II) indicates quenching of the magnetic moment below that of monomeric manganese(II) ion. The [Mn(DGB)Cl2]·H2O complex exhibits a magnetic moment of 6.02 B.M. per manganese, indicating a monomeric manganese complex. E.p.r. data of the complex diluted in an analogous Zn-DGB complex (1∶20) correlates well for D = 0.22cm−1 and λ ∼- 0.267. The [Mn(DGB)-(C1O4)2] and [Mn(BDGB)(ClO4)2] complexes, diluted in analogous Zn-DGB and Zn-BDGB complexes (1∶20), show a strong single e.p.r. line at g eff ∼- 2. The complexes have low magnetic moments; 4.44 B.M./Mn and 4.39 B.M./Mn, at room temperature.  相似文献   

10.
Three new dinuclear complexes, [(tmen) (H2O)2Ni (Hdmg)(dmg)Cu]·ClO4, [(dien)(H2O)Ni (Hdmg)(dmg) Cu]·ClO4 and [(tmen)Cu(Hdmg)(dmg) Cu] ClO4·H2O (H2dmg=dimethylglyoxime, tmen=tetramethylene diamine), have been prepared. Variable-temperature- magnetic susceptibility measurements (75–300K) on the complexes reveal the presence of intramolecular antiferromagnetic interactions through the oximate bridges. The formation of mononuclear, dinuclear complexes has been confirmed by spectrophotometry.  相似文献   

11.
Summary MnII forms a yellow mononuclear species with the title ligand having a 12 stoichiometry and whose conditional stability constant is 8.9 × 1010 m –2. The c.v. of this complex shows an oxidation at +0.78V versus s.c.e. Controlled-potential electrolysis at +0.80V versus s.c.e. yields a binuclear species of MnIII with a 12 metal:ligand stoichiometry.The addition of MnIII(urea)6(ClO4)3 to a solution of the ligand produces a mononuclear complex of MnIII if the concentration of the metal ion is less than 1 mM. At higher concentrations a binuclear species is obtained. The latter is reduced in two steps, at +0.24 and –0.58 V versus s.c.e. Controlled-potential electrolysis at 0.0 V produces a dark green complex after the transfer of 0.5 equivalents of charge per mole of Mn. This binuclear L2MnII-MnIIIL2 mixed-valence complex can be obtained only by electrolysis of the binuclear L2MnIIIMnIIIL2 species. Attempts to prepare the complex chemically were unsuccessful - the binuclear MnIII species was obtained in every case.Author to whom all correspondence should be directed.  相似文献   

12.
Two novel nickel(II) dinuclear complexes [Ni2(cyclam)2- (DTA)](ClO4)2 (1) and [Ni2(TAA)2(DTA)] (ClO4)2 (2) (TAA=N(CH2CH2NH2)3 , cyclam = 1,4,8,11-tetraazacyclotetradecane, DTA=dithiooxamide) have been prepared and studied by elemental analyses, i.r. and electronic spectra and magnetic measurements. The magnetic susceptibility temperature dependence was measured over the 77–300K range and the observed data were successfully simulated by an equation based on the spin Hamiltonian operator (H=–2JS1S2) giving the exchange integral J=–23.09cm–1 for (1) and J= –26.0cm–1 for (2).  相似文献   

13.
本文合成了五种以氯冉酸二价阴离子为桥联配体的Cu(II)单核([CuLCA].H~2O)和双核([Cu~2L~2CA](ClO~4)~2配合物:[Ca(phen)CA].H~2O(1),[Cu~2(phen)~2CA](ClO~4)~2(2),[Cu(NO~2-phen)CA].H~2O(3),[Cu~2(NO~2-phen)~2CA](ClO~4)~2(4)和[Cu~2(bpy)~2CA](ClO~4)~2(5)。经元素分析、红外、固体紫外、顺磁共振、磁化率及变温磁化率的测定对上述各配合物进行了表征。配合物1,3可能是通过水分子中的氢键将两个[CuLCA]单元联接而缔合的假双聚体。配合物2,4,5则由阳[Cu~2L~2CA]^2^+阳离子和弱配位的ClO~4^-阴离子所组成。双核配合物中Cu(II)离子的几何构型可能为畸变的四方锥。所有五种配合物均难溶于水及常见有机溶剂。上述配合物的室温ESR谱呈现ΔM~s=2的从单重态到三重态的半场跃迁。配合物2,5的变温磁化率(4-300K)已测得,利用Heisenberg模型确定交换参数J值为-29.2和-25.7cm^-^1。表明在此类桥联配合物中,两核间存在着反铁磁性交换耦合作用。  相似文献   

14.
Three new cobalt(II) binuclear complexes have been prepared and characterized, namely [Co2(TCPHTA)(L)4](ClO4)2 [L=1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline(NO2-phen) and 2, 2-bipyridyl (bipy), respectively], where TCPHTA is the tetrachlorophthalate dianion. Based on i.r. spectra, elemental analyses and conductivity measurements, tetrachlorophthalato-bridged structures consisting of two cobalt(II) ions in which each cobalt(II) ion has a distorted octahedral environment are proposed for these complexes. The temperature dependence of the magnetic susceptibility for [Co2(TCPHTA)(L)4](ClO4)2·nH2O (L=phen, NO2-phen and bipy) has been measured over the 77–300 K range and the observed data successfully simulated by an equation based on the spin Hamiltonian operator (H=–2JS1S2), giving the exchange integral J=–2.92, –3.45, –4.03 cm–1, respectively. This result indicates the presence of a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

15.
The syntheses and magnetic properties are reported for a series of copper(Ⅱ) complexes prepared from a pentadentate binucleating ligand 2,6-diformyl-4-methylphenol di(benzoyl-hydrazone) (H3L). These complexes incorporate different exogenous ions (X-) into a bridging position to form copper(Ⅱ) binuclear complexes of the formula [Cu2(H2L)X]2+, where X-= Br-(1), Cl-(2), HO-(3), C2H5O-(4) and C3H3N2- (5). The complexes have been characterized with variable temperature magnetic susceptibility (4.2-300 K) and the observed data were fit to those from a modified Bleaney-Bowers equation by least-squares method, giving the exchange integral 2J = -6.2 cm-1 for 1, -76.4 cm-1 for 2, -241.9 cm-1 for 3, -231.1 cm-1 for 4 and -343.8 cm-1 for 5. This suggested that there is an antiferromagnetic interaction between the Cu(Ⅱ) ions and the sequence of the effect of some exogenous bridging ligands on magnetic coupling is corresponding to that in spectrochemical series.  相似文献   

16.
Six new μ-phthalato binuclear oxovanadium(IV) complexes, namely [(VO)2(PHTH)-(L)2]SO4 (L denotes 2,2′-bipyridine (bpy); 1,10-phenanthroline (phen); 4,4′-dimethyl-2,2′-bipyridine (Me2 bpy); 5-nitro-1,10-phenanthroline (NO2-phen); 5-chloro-1,10-phenanthroline (Cl-phen) and 5-methyl-1,10-phenanthroline (CH3-phen), where PHTH is the phthalate dianion), have been synthesized and characterized by elemental analyses, IR, electronic spectra, magnetic moments at room temperature and molar conductivity measurements. The temperature dependence of the magnetic susceptibility of complexes [(VO)2(PHTH)(phen)2]SO4 (1) and [(VO)2(PHTH)(CH3-phen)2]SO4 (2) was measured in 4—300 K range and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, ?=?2J?1·?2, giving the exchange integrals J=?12.8 cm?1 for 1 and J=?7.9 cm?l for 2. This indicates an antiferromagnetic spin-exchange interaction between the metal ions within each molecule.  相似文献   

17.
Summary Binuclear NiII and CoII complexes derived from 2,6-diformyl-4-methylphenol and various aromatic monoamines have been prepared and investigated. The NiII complexes have Ni2LCl3 composition while the CoII complexes have Co2L2Cl2 composition, where L represents the organic ligand. The complexes are active catalysts in the oxidation of 3,5-di-t-butylcatechol (3,5-DTBC) by dioxygen, but less so than their Cu analogues. This result is attributed to the absence of antiferromagnetic coupling between the metal centres.  相似文献   

18.
The synthesis and mesomorphic (liquid crystal) properties of new binuclear dihalocopper(II) complexes derived from N- and ring-substituted salicylaldimine Schiff bases are reported, together with the mesomorphic properties of their monomeric precursor complexes. With just N-substituents both the dichlorodicopper(II) binuclear complexes and their mononuclear analogues are waxy solids with melting points that increase with their N-chain length. However, with both N- and ring-substituents in the 4-positions, the mononuclear and binuclear complexes are each liquid crystalline or mesogenic, except in case of the mononuclear complexes where the N-substituent is straight chain alkyl. The other mononuclear complexes exhibit a variety of liquid crystal phases: smectic A, C, and E (SA, SC, and SE, respectively). The liquid crystal phase SA is observed in the binuclears with shorter chain N-substituents p-R-O-C6H4- and shorter chain ring-substituents. The chain lengths were increased until the phase behavior expanded to a further form SC in the case of an N-substituent p-C14H29O-C6H4- and a -OC12H25 ring substituent. This points the way toward achieving multiphase behavior with these binuclear systems. The Cu-Br analogues of the binuclear complexes behave similarly but with significant qualitative differences, specifically lower mesophase stability and higher melting temperatures. The structures of the nonmesogenic binuclears ([Cu(N-dodecylSal)X]2, X=Cl, Br) were determined with the aid of X-ray crystallography. These are prototypes for the structures of the binuclear complexes and especially for the shape of the central Cu2O2 X2 core in the binuclears: distorted planar coordination about the copper with distortion toward tetrahedral measured by a characteristic twist angle tau (0 degrees planar; 90 degrees tetrahedral). The binuclear complexes also show magnetic coupling which can be used to estimate the geometry. For [Cu(N-dodecylSal)X]2 tau>36 degrees, which corresponds to weaker coupling than observed in the mesogenic binuclears where a stronger magnetic coupling indicates a geometry closer to planar (tau=25 degrees). The mesophases were characterized by differential scanning calorimetry (DSC) analysis and optical polarized microscopy.  相似文献   

19.
The static magnetic susceptibility of mononuclear trimethylacetate nickel complex Ni(NH2Ph)4(OOCCMe3)2 (3) and binuclear complexes Ni2(μ-OH2)(μ-OOCCMe3)2(OOCCMe3)2(dipy)2 (4) and Ni2(μ-OOCCMe3)4py2 (5) was measured in the temperature range of 2–300 K. The magnetic behavior of3 is typical of mononuclear complexes with the Ni11 atom in the octahedral environment. Numerical calculations of the temperature dependence of magnetic susceptibility with inclusion of isotropic exchange interactions (J) and single-ion initial splitting parameters showed that the magnetic behavior of complexes4 and 5 can be interpreted in terms of ferromagnetic (for4) and antiferromagnetic (for5) interactions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 437–442, March, 2000.  相似文献   

20.
To utilized a bridged-ligand of 1,8-naphthalate dianion (NAPH) as building block by self-assembly technology, a new binuclear copper(II) compound [Cu2(μ-NAPH)2(DMF)4(H2O)2] (I) has been constructed and structurally characterized by X-ray crystallography. Complex I crystallizes in monoclinic, space group C2/c, with a = 17.822(9), b = 9.964(5), c = 23.194(11) Å and β = 102.385(5)°. Magnetic measurements confirm that I presents a very weak antiferromagnetic interaction between the paramagnetic ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号