首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We calibrate the methodology for the calculation of nuclear magnetic resonance (NMR) properties in novel organo-xenon compounds. The available state-of-the-art quantum-chemical approaches are combined and applied to the HXeCCH molecule as the model system. The studied properties are (129)Xe, (1)H, and (13)C chemical shifts and shielding anisotropies, as well as (131)Xe and (2)H nuclear quadrupole coupling constants. The aim is to obtain, as accurately as currently possible, converged results with respect to the basis set, electron correlation, and relativistic effects, including the coupling of relativity and correlation. This is done, on one hand, by nonrelativistic correlated ab initio calculations up to the CCSD(T) level and, on the other hand, for chemical shifts and shielding anisotropies by the leading-order relativistic Breit-Pauli perturbation theory (BPPT) with correlated ab initio and density-functional theory (DFT) reference states. BPPT at the uncorrelated Hartree-Fock level as well as the corresponding fully relativistic Dirac-Hartree-Fock method are found to be inapplicable due to a dramatic overestimation of relativistic effects, implying the influence of triplet instability in this multiply bonded system. In contrast, the fully relativistic second-order Moller-Plesset perturbation theory method can be applied for the quadrupole coupling, which is a ground-state electric property. The performance of DFT with various exchange-correlation functionals is found to be inadequate for the nonrelativistic shifts and shielding anisotropies as compared to the CCSD(T) results. The relativistic BPPT corrections to these quantities can, however, be reasonably predicted by DFT, due to the improved triplet excitation spectrum as compared to the Hartree-Fock method, as well as error cancellation within the five main BPPT contributions. We establish three computationally feasible models with characteristic error margins for future calculations of larger organo-xenon compounds to guide forthcoming experimental NMR efforts. The predicted (129)Xe chemical shift in HXeCCH is in a novel range for this nucleus, between weakly bonded or solvated atomic xenon and xenon in the hitherto characterized molecules.  相似文献   

2.
The nuclear quadrupole coupling constants (NQCCs) of noble gas and noble metal nuclei in the recently found noble gas-noble metal fluorides (NgMF, where Ng=Ar,Kr,Xe and M=Cu,Ag,Au) are obtained theoretically by high-level ab initio calculations, where both relativistic and electron correlation effects are included, and compared to experimental results. Fully relativistic four-component Dirac-Hartree-Fock (DHF) calculations are carried out at the basis set limit for electric field gradient that couples with the electric quadrupole moment of the nucleus, and uncorrelated relativistic effects are extracted by comparing DHF results to nonrelativistic (NR) HF calculations. Electron correlation effects are investigated both at fully relativistic second-order Moller-Plesset (DMP2) and at NR MP2 levels of theory, as well as at the NR coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level. The validity of the approximation where relativistic effects, on the one hand, and nonrelativistically obtained correlation effects, on the other hand, are evaluated separately and assumed to be additive, is investigated by comparison with the DMP2 results. Inclusion of relativistic effects is shown to be necessary for obtaining the correct NQCC trends as the nucleus of interest and/or its neighbors become heavier. Electron correlation treatment is needed for approaching quantitative agreement with the experimental NQCCs. The assumption of additive electron correlation and relativistic effects, corresponding to the NR correlation treatment added on top of relativistic DHF data, gives qualitatively correct noble gas NQCCs. For noble metal NQCCs, correlation treatment at the relativistic level of theory is mandatory for reaching agreement with experimental results. Current work also confirms the experimental trends of NQCCs, which have been taken as an indication of nearly covalent interaction between noble gas and noble metal in the heaviest present systems, especially in XeAuF.  相似文献   

3.
4.
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order M?ller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.  相似文献   

5.
The leading-order perturbation theory approach to relativistic effects on the nuclear magnetic shielding provides an economic method for obtaining the chemical shifts in heavy-element containing systems. The method features detailed analysis potential in terms of the different physical mechanisms affecting the shielding tensors of heavy nuclei. The perturbative nature, however, results in an increasing error with increasingly heavy elements in the system. In this work, we investigate the performance of the Breit-Pauli perturbation theory (BPPT) against fully relativistic four-component theory in computing the nuclear shielding constants as well as the chemical shifts with respect to corresponding atomic ions of group-12 metals, M = Zn, Cd, and Hg, in dimethyl M(CH(3))(2) and aqueous M(H(2)O)(6)(2+) complexes. It is shown that five out of the total of sixteen BPPT correction terms are responsible for most of the relativistic corrections for the chemical shift of studied metals. The relativity is important already for Cd and BPPT is proven to work well up to Hg for the chemical shift, as calibrated with the fully relativistic method.  相似文献   

6.
The isotropic 129Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the 129Xe NMR CS. The 129Xe shielding constant was obtained by averaging the 129Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit–Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated 129Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental 129Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of 129Xe NMR parameters in different Xe atom guest–host systems. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Ab initio values of the absolute shielding constants of phosphorus and hydrogen in PH(3) were determined, and their accuracy is discussed. In particular, we analyzed the relativistic corrections to nuclear magnetic resonance (NMR) shielding constants, comparing the constants computed using the four-component Dirac-Hartree-Fock approach, the four-component density functional theory (DFT), and the Breit-Pauli perturbation theory (BPPT) with nonrelativistic Hartree-Fock or DFT reference functions. For the equilibrium geometry, we obtained σ(P) = 624.309 ppm and σ(H) = 29.761 ppm. Resonance frequencies of both nuclei were measured in gas-phase NMR experiments, and the results were extrapolated to zero density to provide the frequency ratio for an isolated PH(3) molecule. This ratio, together with the computed shielding constants, was used to determine a new value of the nuclear magnetic dipole moment of (31)P: μ(P) = 1.1309246(50) μ(N).  相似文献   

8.
We present perturbational ab initio calculations of the nuclear-spin-dependent relativistic corrections to the nuclear magnetic resonance shielding tensors that constitute, together with the other relativistic terms reported by us earlier, the full leading-order perturbational set of results for the one-electron relativistic contributions to this observable, based on the (Breit-)Pauli Hamiltonian. These contributions are considered for the H(2)X (X = O,S,Se,Te,Po) and HX (X = F,Cl,Br,I,At) molecules, as well as the noble gas (Ne, Ar, Kr, Xe, Rn) atoms. The corrections are evaluated using the relativistic and magnetic operators as perturbations on an equal footing, calculated using analytical linear and quadratic response theory applied on top of a nonrelativistic reference state provided by self-consistent field calculations. The (1)H and heavy-atom nuclear magnetic shielding tensors are compared with four component, nearly basis-set-limit Dirac-Hartree-Fock calculations that include positronic excitations, as well as available literature data. Besides the easy interpretability of the different contributions in terms of familiar nonrelativistic concepts, the accuracy of the present perturbational scheme is striking for the isotropic part of the shielding tensor, for systems including elements up to Xe.  相似文献   

9.
The isotropic 129Xe NMR chemical shift of atomic Xe dissolved in liquid benzene was simulated by combining classical molecular dynamics and quantum chemical calculations of 129Xe nuclear magnetic shielding. Snapshots from the molecular dynamics trajectory of xenon atom in a periodic box of benzene molecules were used for the quantum chemical calculations of isotropic 129Xe chemical shift using nonrelativistic density functional theory as well as relativistic Breit?CPauli perturbation corrections. Thus, the correlation and relativistic effects as well as the temperature and dynamics effects could be included in the calculations. Theoretical results are in a very good agreement with the experimental data. The most of the experimentally observed isotropic 129Xe shift was recovered in the nonrelativistic dynamical region, while the relativistic effects explain of about 8% of the total 129Xe chemical shift.  相似文献   

10.
We employ state-of-the-art methods and basis sets to study the effect of inserting the Xe atom into the water molecule and the water dimer on their NMR parameters. Our aim is to obtain predictions for the future experimental investigation of novel xenon complexes by NMR spectroscopy. Properties such as molecular structure and energetics have been studied by supermolecular approaches using HF, MP2, CCSD, CCSD(T) and MP4 methods. The bonding in HXeOH···H(2)O complexes has been analyzed by Symmetry-Adapted Perturbation Theory to provide the intricate insight into the nature of the interaction. We focus on vibrational spectra, NMR shielding and spin-spin coupling constants-experimental signals that reflect the electronic structures of the compounds. The parameters have been calculated at electron-correlated and Dirac-Hartree-Fock relativistic levels. This study has elucidated that the insertion of the Xe atom greatly modifies the NMR properties, including both the electron correlation and relativistic effects, the (129)Xe shielding constants decrease in HXeOH and HXeOH···H(2)O in comparison to Xe atom; the (17)O, as a neighbour of Xe, is deshielded too. The HXeOH···H(2)O complex in its most stable form is stabilized mainly by induction and dispersion energies.  相似文献   

11.
We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants.  相似文献   

12.
The authors present a scheme to simplify four-component relativistic calculations of nuclear magnetic shielding constants. The central idea is to decompose each first order orbital into two terms, one is magnetically balanced and directly leads to the diamagnetic term, and the other is, to leading order of relativity, kinetically balanced and can therefore simply be represented in the basis of unperturbed positive energy states. As a matrix formulation, the present approach is far simpler than other operator theories. Combined with the Dirac-Kohn-Sham ansatz, the nuclear magnetic shielding constants for the Kr, Xe, and Rn atoms as well as the HBr and HI molecules are calculated, and the results compare favorably with those of other schemes.  相似文献   

13.
Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.  相似文献   

14.
Hartree–Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange‐correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin‐orbit zeroth‐order regular approximation Hamiltonian in combination with the large Slater‐type basis set QZ4P as well as with the four‐component Dirac–Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization‐consistent basis sets aug‐pcSseg‐4 for He, Ne and Ar, aug‐pcSseg‐3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero‐point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Ab initio all-electron fully relativistic Dirac–Fock self-consistent field and Dirac–Fock–Breit calculations are reported for the XeF4 molecule at various internuclear distances assuming the experimental D4h geometry with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF4 at various internuclear distances. The calculated relativistic correction to the total energy of molecule at the Dirac–Fock level is ~ ?5856 eV, whereas the magnetic part of the Breit correction to the electron-electron interaction is calculated as ~ 177 eV. The electron correlation effects were included in the nonrelativistic Hartree–Fock calculations using the second-order Møller-Plesset (MP 2) theory, and the calculated correlation energy for XeF4 is ?71 eV. The basis-set superposition error (BSSE ) was estimated by using the counterpoise method for Xe and F. The inclusion of both the relativistic and electron correlation effects in the calculated total energies of F, Xe, and XeF4 predicts the Xe—F bond length and dissociation energy of XeF4 as 1.952 Å and 5.59 eV, respectively, which are in excellent agreement with the experimental values of 1.953 Å and 5.69 eV, respectively, for XeF4. The contribution of the electron correlation and relativistic effects to the dissociation energy of XeF4 is 8.11 and 0.05 eV, respectively. The Breit interaction, however, contributes only 0.02 eV to the dissociation energy of XeF4. Electron correlation is most significant for the prediction of an accurate value of dissociation energy, whereas relativistic effects are very important for the prediction of spin-orbital splitting as well as the energies of the orbitals, especially the inner orbitals of XeF4. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The nuclear magnetic resonance (NMR) parameters in porphyrin and porphycene have been calculated to investigate their changes during the process of proton exchange, using density-functional theory (DFT) for both the spin-spin coupling constants and the shielding constants. In addition, in calculations on the smaller 1,3-bis(arylimino)isoindoline molecule, we have tested the performance of our computational approach against experimental data. The calculated nuclear spin-spin coupling constants and shielding constants have been analyzed as functions of the progress of the proton transfer between two nitrogen atoms. The one-bond couplings between proton and nitrogen, dominated by the Fermi-contact term, decay steeply as the internuclear distance increases. The small changes in the intramolecular J(HH) coupling between two inner protons are mainly determined by the sum of relatively large spin-orbit terms. The isotropic shielding constant shows a strong deshielding of the nitrogen nuclei as the proton migrates away. Both the isotropic shielding of the exchanged protons and the shielding anisotropy exhibit a minimum close to the transition states.  相似文献   

17.
Two‐component relativistic density functional theory (DFT) with the second‐order Douglas–Kroll–Hess (DKH2) one‐electron Hamiltonian was applied to the calculation of nuclear magnetic resonance (NMR) shielding constant. Large basis set dependence was observed in the shielding constant of Xe atom. The DKH2‐DFT‐calculated shielding constants of I and Xe in HI, I2, CuI, AgI, and XeF2 agree well with those obtained by the four‐component relativistic theory and experiments. The Au NMR shielding constant in AuF is extremely more positive than in AuCl, AuBr, and AuI, as reported recently. This extremely positive shielding constant arises from the much larger Fermi contact (FC) term of AuF than in others. Interestingly, the absolute values of the paramagnetic and the FC terms are considerably larger in CuF and AuF than in others. The large paramagnetic term of AuF arises from the large d‐components in the Au dπ –F pπ and Au sdσ–F pσ molecular orbitals (MOs). The large FC term in AuF arises from the small energy difference between the Au sdσ + F pσ and Au sdσ–F pσ MOs. The second‐order magnetically relativistic effect, which is the effect of DKH2 magnetic operator, is important even in CuF. This effect considerably improves the overestimation of the spin‐orbit effect calculated by the Breit–Pauli magnetic operator. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The NMR properties (chemical shift and spin-spin coupling constants) of (129)Xe in covalent compounds and weakly bound complexes have been investigated by DFT methods including relativistic effects. For covalent species, a good agreement between experimental and calculated results is achieved without scalar relativistic effects, but their inclusion (with a triple-zeta, double-polarization basis set) leads to some improvement in the quality of the correlation. The spin-orbit coupling term has a significant effect on the shielding constant, but makes a small contribution to the chemical shift. Coupling constants contain substantial contributions from the Fermi contact and paramagnetic spin-orbit terms; unlike light nuclei the spin-dipole term is also large, whereas the diamagnetic spin-orbit term is negligible. For van der Waals dimers, the dependence of the xenon chemical shift and anisotropy is calculated as a function of the distance. Small (<1 Hz) but non-negligible through-space coupling constants between (129)Xe and (13)C or (1)H are predicted. Much larger couplings, of the order of few Hz, are calculated between xenon and (17)O in a model silicate residue.  相似文献   

19.
20.
Ab initio accurate all-electron relativistic molecular orbital Dirac–Fock self-consistent field calculations are reported for the linear symmetric XeF2 molecule at various internuclear distances with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF2 at various internuclear distances. The relativistic correction to the electronic energy of XeF2 was calculated as ~ ?215 hartrees (?5850 eV) by using the Dirac–Fock method. The dominant magnetic part of the Breit interaction correction to the nonrelativistic interelectron Coulomb repulsion was included in our calculations by both the Dirac–Fock–Breit self-consistent field and perturbation methods. The calculated Breit correction is ~6.5 hartrees (177 eV) for XeF2. The relativistic Dirac–Fock as well as the nonrelativistic HF wave functions predict XeF2 to be unbound, due to neglect of electron correlation effects. These effects were incorporated for XeF2 by using various ab initio post Hartree–Fock methods. The calculated dissociation energy obtained using the MP 2(full) method with our extensive basis set of 313 primitive Gaussians that included d and f polarization functions on Xe and F is 2.77 eV, whereas the experimental dissociation energy is 2.78 eV. The calculated correlation energy is ~ ?2 hartrees (?54 eV) at the predicted internuclear distance of 1.986 Å, which is in excellent agreement with the experimental Xe—F distance of 1.979 Å in XeF2. In summary, electron correlation effects must be included in accurate ab initio calculations since it has been shown here that their inclusion is crucial for obtaining theoretical dissociation energy (De) close to experimental value for XeF2. Furthermore, relativistic effects have been shown to make an extremely significant contribution to the total energy and orbital binding energies of XeF2. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号