首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shielding effects of the surrounding arms and chains on the reactive centers taking part in RAFT four‐arm star polymerization following the Z‐group approach are calculated by means of exact enumeration of star/chain samples prepared by Monte Carlo techniques. The shielding effect, which can be relieved when using expanded core moieties, increases with increasing chain (arm) lengths. This leads to a reduction of the contact probability according to a power law with an exponent of −0.4 to −0.45. Additionally, characteristic chain properties and shape parameters are calculated as a function of the distance between the center of the star and the end of the linear chain in order to gain deeper insight into the mechanism of contact formation preceding the actual reaction.

  相似文献   


2.
Pairs of star-branched molecules--taken from ensembles of athermal five-way cubic lattice chains prepared by Monte Carlo simulation--are analyzed for the relative probability of mutual contact formation between particularly specified segments i and j belonging to different chains within these pairs. These contact probabilities--termed shielding factors K(ij)--are calculated by means of exact enumeration as a function of chain length ranging from n = 8 to 256 bonds per arm, as a function of functionality (i.e., the number of arms) ranging from F = 2 to 6 arms, and as a function of segment position within the arms ranging from central to terminal segments. In addition, changes of properties that characterize the size and shape of the involved molecules while approaching and penetration are evaluated as a function of chain separation.  相似文献   

3.
A new approach is reported that combines synchrotron radiolysis and mass spectrometry to probe the surface of proteins. Hydroxyl radicals produced upon the radiolysis of protein solutions with synchrotron light for several milliseconds result in the reaction of amino acid side chains. This results in the formation of stable oxidation products where the level of oxidation at the reactive residues is influenced by the accessibility of their side chains to the bulk solvent. The aromatic and sulfur-containing residues have been found to react preferentially in accord with previous peptide studies. The sites of oxidation have been determined by tandem mass spectrometry. The rate of oxidation at these reactive markers has been measured for each of the proteolytic peptides as a function of exposure time based on the relative proportion of modified and unmodified peptide ions detected by mass spectrometry. Oxidation rates have been found to correlate closely with a theoretical measure of the accessibility of residue side chains to the bulk solvent in the native protein structure. The synchrotron-based approach is able to distinguish the relative accessibility of the tryptophan residue side chains of lysozyme at positions 62 and 123 from each other and all other tryptophan residues based on their rates of oxidation.  相似文献   

4.
A model polymer network was constructed from branched chains. Each chain was built on a simple cubic lattice forming a star-branched polymer consisting of f = 3 arms of equal lengths. The fragment of network under consideration consisted of 1, 2 and 3 star polymers with different topology of connections. The only potential used was excluded volume (athermal chains). The properties of the network were determined by the means of computer simulations using the classical Metropolis sampling algorithm (local micromodifications of chain conformation). The behaviour of linear chains of the same molecular weight was also studied as a state of reference. The influence of attaching the next star-branched chain to the network on its static and dynamic properties was studied. The short-time dynamic behaviour of chain fragments was determined and discussed.  相似文献   

5.
The effect of confinement, number of branches (functionality), and size of the molecules on various properties as a function of temperature of star-branched polymers confined between two walls was studied using Monte Carlo simulations with the parallel tempering technique. The coil-to-globule transition and the liquidlike to solidlike transition, similar to those observed for linear chains, were characterized in all systems by changes in the heat capacity, internal energy, and radius of gyration. The transitions were also characterized by the most probable isomeric structure at a given temperature. The radius of gyration of the star polymers was smaller than the values of linear chains when the number of arms f increased. For star chains with more than f=5 arms the values of the radius of gyration, and therefore the size of the molecules, were similar for every condition of confinement studied, especially at higher temperatures. As confinement was increased, the difference in the radius of gyration of linear chains and star polymers became even larger. The coil-to-globule transition temperatures shifted to higher temperatures as the size of the chains and the number of arms in a molecule were increased. Effects of confinement were higher on the properties of the system at the smallest separations (less than twice the monomer diameter), where the coil-to-globule transition shifted to lower temperatures. The liquidlike to solidlike transition was present at almost the same temperature for different conditions of confinement, chain size, and number of arms. The behavior of the systems for separations between the walls greater than five bead diameters was similar to the behavior in the unconfined case. Hence, no considerable effect of confinement was found above this separation.  相似文献   

6.
以梳形高分子为纽带,基于粗粒化分子动力学模拟方法,研究了线形、梳形和星形拓扑结构高分子的静态和动态性质,以揭示稀溶液中高分子链行为与链拓扑结构依赖关系的一般性规律.研究结果表明,随着线形-梳形-星形的链拓扑结构转变,回转半径的标度关系由仅依赖分子聚合度转变为同时依赖链聚合度与臂数或侧链数.分析了星形高分子和梳形高分子的静态和动态性质的特征规律.星形高分子的臂数增加使其尺寸迅速减小,形状则由长椭球形转变为类球形,且扩散系数也随之增加;其均方回转半径(〈R_g〉)和扩散系数(D)与分子聚合度(N)及臂数(f)的标度规律为〈R_g〉~N~(0.581)f~(-0.402),D~N~(-0.763)f~(0.227).梳形高分子的静态与动态性质与分子聚合度及侧链数的依赖关系为〈R_g〉~N~(0.597)f~(-0.212)(每个支化点只有一条侧链)和〈R_g〉~N~(0.599)f~(-0.316)(每个支化点有多条侧链).  相似文献   

7.
A phenolic copolymer has been prepared by copolymerization of p-chlorophenol, p-cresol, and formaldehyde in the presence of acid catalyst. The copolymer was partially and completely dehalogenated by a standard method. The dehalogenated copolymer chain had a random distribution of reactive positions which were originally occupied by Cl atoms. Some substituted monomers, oligomers of known structure and molecular weight, and basic polymer chains have been grafted at these reactive positions. The halogen percentage of the grafted copolymers could be calculated on the assumption that all the available reactive positions are attached to the respective units. Reasonably good agreement has been found between the calculated and observed amount of halogen percentage in the grafted copolymers.  相似文献   

8.
The structure and conformational properties of star-shaped oligostyrenes containing fullerene C60 as a branching center and short arms with lengths at the level of the persistent length or a segment of a polystyrene chain are studied by small-angle neutron scattering in deuterotoluene. The gyration radii of linear precursor oligomers (~0.4 and 0.6 nm) and corresponding star-shaped molecules (~1.1 and 1.4 nm) are calculated under the Guinier approximation. The linear oligomer (4–5 units) is found to be a rodlike molecule; arms of star-shaped molecules based on it assume the straightened conformations as well. Linear oligomer chains composed of 6–7 units deviate from the rodlike shape and acquire a certain flexibility in solution, but oligomer chains grafted onto the C60 center preserve the extended conformations. There is no marked tendency toward screening of fullerene by radially extended arms. The number of branches in the star-shaped oligostyrenes corresponds to a functionality of f = 6 preset by the conditions of synthesis.  相似文献   

9.
In this study, we investigated the process of random sequential adsorption of stiff and flexible polymer chains on a two-dimensional square lattice. The polymer chains were represented by sequence of lattice points forming needles, T shapes, and crosses as well as flexible linear chains and star-branched chains consisted of three and four arms. The Monte Carlo method was employed to generate the model systems. The percolation threshold and the jamming threshold were determined for all systems under consideration. The influence of the chain length and the chain architecture on both thresholds was calculated and discussed. The changes in the ordering of the system were also studied.  相似文献   

10.
The dynamic Monte Carlo algorithm is employed to explore the dynamics of flexible linear chains. The chains are represented by the bond‐fluctuation model with and without attractions between non‐bonded units placed at close distances. This mimics the behavior of real chains in the good and poorer solvents. We obtain the chain sizes, diffusion coefficients, Rouse modes, and their relaxation times. We also evaluate the time correlation function of the end‐to‐end vector at different concentrations. Subsequently, we compare the dependence of the simulation results on chain length, solvent quality, concentration, and mode order with the corresponding theoretical predictions. We observe a retardation of diffusion for non‐dilute systems close to the theta state. This retardation is too high to be exclusively attributed to the increase of global friction and can be caused by temporary adherence of the chains to transient clusters.  相似文献   

11.
Photochromic diarylethenes, which bear carboxyl groups at the ortho, meta, or para positions of both terminal phenyl groups, have been synthesized. The diarylethenes adopt linear chain structures as a result of hydrogen bonding in the crystalline phase, and the crystals exhibit photochromic properties. The absorption maximum of the photogenerated closed-ring isomer of the para-substituted derivative shows an 80 nm bathochromic shift in comparison with that of the ortho-substituted derivative. The maximum of the closed-ring isomer of the meta-substituted derivative is located in between those of the para- and ortho-substituted derivatives. The shifts can be attributed to the differences in conformation among the derivatives, arising from the restrictions imposed by the hydrogen-bonded chains.  相似文献   

12.
Linear telechelic, α,ω‐ditelechelic, and star‐shaped tri‐, tetra‐, penta‐, and hexa‐arm poly(L ‐lactide)s (PLAs) fitted at every arm with pyrene end group have been prepared. Internal dynamics and mobility of the PLA chains in tetrahydrofuran solution at 25 °C, with regard to the number of PLA arms in one macromolecule and the individual arm average degree of polymerization, was followed by fluorescence spectroscopy. Analysis of both static and time‐resolved spectra of the star‐shaped polymers revealed dynamic segmental motion resulting in end‐to‐end cyclization, accompanied by an excimer formation. Probability and rate of the latter reaction increased with increasing number of arms and with decreasing their polymerization degree. Moreover, time‐resolved measurements revealed that for macromolecules containing few arms (2 or 3) the pyrene moieties are located in the interior of the star‐shaped PLAs, whereas in the instance of the higher number of arms (4–6) they are located at the periphery of the star‐shaped PLAs. Thus, increasing the number of arms leads to their stretching away from the center of the star‐shaped PLA macromolecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4586–4599, 2005  相似文献   

13.
Aggregation factor, the macromolecular complex which mediates species-specific aggregation of dissociated sponge cells, was isolated from several species, partially characterized, and visualized by electron microscopy. All factors were large fibrous complexes with a backbone and side chains or arms. In some factors, the backbone is linear. In others it is circular and the complex appears as a sunburst with arms extending like rays from the circle. The size and location of the polysaccharide chains have been studied using purified preparations of Microciona prolifera. "Sunbursts" treated with ethylenediaminetraacetate (EDTA) for 4 weeks at 0 degrees C dissociate into 3 protein- and polysaccharide-containing components. Sodium dodecyl sulfate does not cause the sunburst to dissociate nor does it inhibit dissociation in the presence of EDTA suggesting that dissociation is not due to hydrolytic enzymes. The dissociation products were fractionated on a 977-A pore size micropore glass column. Fifteen percent of the material is excluded and appears in the electron microscope as the central circle of the sunburst. Digestion of the circles with 10(-3) M dithiothreitol (DTT) and 0.5 mg/ml proteinase K for 72 h at 37 degrees C produces 2 polysaccharide chains of 65,000 and 6,000 daltons as fractionated and sized on a 233-A pore size micropore glass column using Pharmacia dextrans as standards. The included fractions of the EDTA-treated material are subunits of the arms which contain 70% of the polysaccharide. A single polysaccharide of 6,000 daltons as measured on 233-A size glass beads and Sephadex G-75 is released from these subunits by proteinase digestion. Pharmacia dextrans are used as standard on both columns. We calculate that there would be four 65,000-dalton chains and one hundred 6,000-dalton chains per circle and fifty 6,000-dalton chains per arm. The third component of the EDTA-treated preparation is partially included on the column. It appears as linear fibrils in the electron microscope and contains polydisperse polysaccharides of several-hundred-thousand daltons. It may be an impurity since there is apparently less than 1 of the large polysaccharide chains per sunburst.  相似文献   

14.
The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.  相似文献   

15.
Polymer materials often contain a polydispersity of molecular lengths. We studied the linear growth rates of polymer lamellar crystals in the binary mixtures of different chain lengths by means of dynamic Monte Carlo simulations. Both chain lengths were chosen large enough to perform chain folding upon crystal growth but not very large to avoid the effect of chain entanglement in the bulk phase. We found that the crystal growth rates exhibit a linear dependence upon the compositions of mixtures. This linear relation implies that the overall crystal growth rates are integrated by the separate contributions of variable-length single polymers, supporting the model of intramolecular crystal nucleation. In each event of crystal growth of single polymers, long chains yield more crystallinity than short chains. This high efficiency explains higher crystal growth rates of long chains than that of short chains, and the explanation is quite different from the traditional view on the basis of their different melting points. In addition, with a partial release of sliding diffusion for crystal thickening, a new dependence of crystal growth rates occurs near the dilute end of long-chain compositions at high temperatures, which can be attributed to the preference of integer-number chain folding at the crystal growth front. The preferred fold lengths may vary with chain lengths and thus influence the crystal growth rates.  相似文献   

16.
杨玉良  张红东 《化学学报》2000,58(7):895-900
在平均场近似下求得了星型高分子共混体系的混合自由能及其相分离动力学方程。本文的理论结果表明,型高分子共混体系与线型高分子共混体系相比具有更快的相分离速度。而且,因其相界面张力较低,体系较易形成更多的相界面,浓度涨落的临界波矢也更大。除此之外,由于在相同分子量的条件下星型高分子的尺寸要小,因此其相界面更窄,当星型高分子的臂数为1或2时,所有结果均合理地还原到熟知的线型高分子共混体系的结果。因此,本文的结果具有更大的普遍性。  相似文献   

17.
Poly(isobutylene) (PIB) chains with a radical at the chain end were graft-copolymerized on the poly(tetrafluoroethylene) (PTFE) surface in vacuo at 77 K. The PIB chains tethered on the PTFE surface in vacuo were regarded as isolated chains from neighboring tethered PIB chains. The molecular motion of the ends of the isolated PIB chains was observed by an electron spin resonance (ESR) spectrometer in the temperature range from 3 to 125 K, which was lower than Tg of PIB, 200 K,1 and two motion modes were found: One is a quantum tunneling of the methyl group located at the chain end at 3 K, and the other is an interconformation transition with freely rotating methyl group at the end at 77 K, where the transition rate was estimated to be 15 MHz at that temperature. The transition rate increased with an increase in temperature. The activation energy of the transition was estimated to be 370 J/mol. The high mobility and low activation energy was attributed to the isolation of PIB chains in vacuo. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2095–2102, 1998  相似文献   

18.
We present results of computer simulations of polymer brushes (layers of polymer chains attached at one end onto an impermeable planar surface) under shear deformation at constant shear rate. As the first stage of calculations the behavior of a single brush was studied. The monomer density profile, the distribution of the chain ends, the positions and orientations of different monomers along the chain were calculated. Dimensions of the polymer chains as functions of the shear rate were obtained for different grafting densities. An increase in the brush thickness over the grafting plane with an increase in the shear rate as predicted by the theory of Barrat was observed. However, the magnitude of the effect appears to be small. We explain this by finite extensibility of the grafted chains.  相似文献   

19.
Using a density functional approach we derive the equations describing the equilibrium orientational distribution of a system of chains composed of elongated segments that interact with segments located on other chains through excluded volume interactions and with neighbouring segments of the same chain through a potential that determines the chain flexibility. We analytically determine the limit of stability of the low density isotropic phase as a function of the number of segments and the chain stiffness. The approach turns out to be formally equivalent to a recently proposed mean-field theory by Petschek and Terentjev. Comparison with the Khoklov-Semenov theory shows that the latter is based on an additional assumption that is not valid in an orientationally ordered phase.  相似文献   

20.
A novel biodegradable thiazolidine‐2‐thione functional chain transfer agent was synthesized and employed as a reversible additional fragmentation chain transfer agent to prepare well‐defined semitelechelic poly‐N‐(2‐hydroxypropyl) methacrylamides (polyHPMAs) with predetermined molecular weights and narrow polydispersities. The protein reactive group, thiazolidine‐2‐thione, was located at the polymer chain ends fixed by biodegradable disulfide bonds. The functional polyHPMA chains were subsequently conjugated to protein (lysozyme) by exploiting reactions between the thiazolidine‐2‐thione functionality and amine residues on the protein surface to form covalent amide linkages. The in vitro bioactivities of the lysozyme–polyHPMA conjugates were assessed by using Micrococcus lysodeikticus cells as substrates. The lysozyme bioactivity was significantly reduced following the conjugation procedure. However, cleavage of the polymer chains from the bioconjugates (under reducing conditions) yielded free protein and a remarkable recovery of bioactivity. In vivo tests were performed by subcutaneous injection into mice and clearly demonstrated decreased proteolytic degradation for the protein–polymer conjugate when compared with native protein, indicating effective protein protection through a conjugation strategy. This bioreversible approach to conjugation allows for a balance to be made between protein protection and effective bioactivity maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号