首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stationary Schrödinger equation with continuum boundary conditions is solved numerically. Quantum probabilities of collision-induced dissociation/recombination for models with two degrees of freedom are calculated using an integral-equation matching procedure together with analytical wavefunctions or finite element solutions alternatively. Model results for He+Ne2 → He+2Ne are reported.  相似文献   

2.
Laser induced fluorescence of the mercury clusters Hg2 and Hg3 in the spectral range between 300 nm to 510 nm has been obtained from the dissociation of HgBr2 at 7.88 eV (157.5 nm) with an F2 molecular laser, together with fluorescence from mercury atomic transitions from highly excited states. The excitation process involves two photon absorption which dissociates the molecule at 15.76 eV total photon energy with the subsequent formation of the metallic clusters.  相似文献   

3.
Quasiclassical trajectory calculations are employed to investigate the dynamics of collision-induced dissociation (CID) of Cr(CO)6 + with Xe atoms at collision energies ranging from 1.3 to 5.0 eV. The trajectory simulations show that direct elimination of CO ligands, during the collision, becomes increasingly important as the collision energy increases. In a significant number of cases, this shattering mechanism is accompanied with a concomitant formation of a transient Xe-Cr(CO)x +(x<6) complex. The calculated results are in very good agreement with the experimental results presented previously [F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213 (2001)]. In particular, the computed cross sections and scattering maps for the product ions Cr(CO)x +(x=3-5) compare very favorably with the reported experimental data. However, in contrast with the conclusions of the previous study, the present calculations suggest that CID dynamics for this system exhibits a significant impulsive character rather than proceeding via a complex surviving more than a rotational period.  相似文献   

4.
The fast bimolecular reaction HgBr + Br2 → HgBr2 + Br is shown to be responsible for the observed rapid and efficient regeneration of HgBr2 in cyclic operation of the repetitively pulsed HgBr photodissociation laser. The rate constant for this reaction has been measured to be (7.7 ± 0.6) × 10?11 cm3 molecule?1 at 415 K.  相似文献   

5.
The structures of peptide collision-induced dissociation (CID) product ions are investigated using ion mobility/mass spectrometry techniques combined with theoretical methods. The cross-section results are consistent with a mixture of linear and cyclic structures for both b4 and a4 fragment ions. Direct evidence for cyclic structures is essential in rationalizing the appearance of fragments with scrambled (i.e., permutated) primary structures, as the cycle may not open up where it was initially formed. It is demonstrated here that cyclic and linear a4 structures can interconvert freely as a result of collisional activation, implying that isomerization takes place prior to dissociation.  相似文献   

6.
Quasiclassical trajectory calculations were carried out to study the dynamics of energy transfer and collision-induced dissociation (CID) of CH(3)SH(+) + Ar at collision energies ranging from 4.34 to 34.7 eV. The relative abundances calculated for the most relevant product ions are found to be in good agreement with experiment, except for the lowest energies investigated. In general, the dissociation to form CH(3)(+) + SH is the dominant channel, even though it is not among the energetically favored reaction pathways. The results corroborate that this selective dissociation observed upon collisional activation arises from a more efficient translational to vibrational energy transfer for the low-frequency C-S stretching mode than for the high-frequency C-H stretching modes, together with weak couplings between the low- and high-frequency modes of vibration. The calculations suggest that CID takes place preferentially by a direct CH(3)(+) + SH detachment, and more efficiently when the Ar atom collides with the methyl group-side of CH(3)SH(+).  相似文献   

7.
Classical trajectory calculations have been performed to investigate the collision-induced dissociation (CID) of the CH(3)SH(+) cation with Ar atoms. A new intramolecular potential energy surface for the CH(3)SH(+) cation is evaluated by interpolation of 3000 ab initio data points calculated at the MP2/6-311G(d,p) level of theory. The new potential energy surface includes seven accessible dissociation channels of the cation. The present QCT calculations show that migration of hydrogen atoms, leading to the rearrangement CH(3)SH(+) <--> CH(2)SH(2)(+), is significant at the collision energies considered (6.5-34.7 eV) and that the formation of CH(3)(+), CH(3)S(+), and CH(2)(+) cations takes place primarily by a "shattering" mechanism in which the products are formed just after the collision. The theoretical product abundances are found to be in qualitative agreement with the experimental data. However, at high collision energies, the calculated total cross sections for the formation of CH(3)(+) and CH(2)SH(+) cations are noticeably larger than the experimental determinations. Several features of the dynamics of the CID processes are discussed.  相似文献   

8.
The kinetic energy dependence of collision-induced dissociation (CID) of dicobalt ion (Co 2 + ) with He, Ar, and Xe has been investigated using guided ion-beam mass spectrometry. The change in efficiency of CID as the target gas is changed is in general agreement with previous CID studies of other systems: the cross section with Ar is 0.5 that with Xe, and no product ions are found with He. By varying the conditions under which the reactant ions are formed, the degree of internal excitation of the dicobalt ions is changed. The internal energies can be characterized by a Maxwell-Boltzmann distribution. We find that CID and reactions with O2 and CO are very sensitive to Co 2 + internal energy. The bond-dissociation energy derived from this work is Do(Co 2 + )=2.75±0.10 eV (63.4±2.3 kcal/mol). The Co 2 + results are compared with a previous study of Fe 2 + .  相似文献   

9.
We investigate the role of vibrational energy excitation of methane and two deuterated species (CD(4) and CH(2)D(2)) in the collision-induced dissociation (CID) process with argon at hyperthermal energies. The quasi-classical trajectory method has been applied, and the reactive Ar + CH(4) system has been modeled by using a modified version of the CH(4) potential energy surface of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339) and the Ar-CH(4) intermolecular potential function obtained by Troya (J. Phys. Chem. A 2005, 109, 5814). This study clearly shows that CID is markedly enhanced with vibrational excitation and, to a lesser degree, with collision energy. In general, CID increases by exciting stretch vibrational modes of the reactant molecule. For the direct dissociation of CH(4), however, the CID cross sections appear to be essentially independent of which vibrational mode is initially excited. In all situations studied, the CID cross sections are always greater for the Ar + CD(4) reaction than for the Ar + CH(4) one, the Ar + CH(2)D(2) being an intermediate situation. A detailed analysis of the energy transfer processes, including their relation with CID, is also presented.  相似文献   

10.
Thermochemistry determined from careful analysis of the energy dependence of cross sections for collision-induced dissociation (CID) reactions has primarily come from the primary dissociation channel. Higher order dissociations generally have thresholds measured to be higher than the thermodynamic limit because of the unknown internal and kinetic energy distributions of the primary products. A model that utilizes statistical theories for energy-dependent unimolecular decomposition to estimate these energy distributions is proposed in this paper. This permits a straightforward modeling of the cross sections for both primary and secondary dissociation channels. The model developed here is used to analyze data for K+(NH3)x, x=2-5, complexes, chosen because the thermochemistry previously determined by threshold CID studies agrees well with values from theory and equilibrium high pressure mass spectrometry. The model is found to reproduce the cross sections with high fidelity and the threshold values for secondary processes are found to be in excellent agreement with literature values. Furthermore, relative thresholds for higher order dissociation processes appear to provide accurate thermodynamic information as well.  相似文献   

11.
In this study we investigated the multi-stage collision-induced dissociation (CID) of N-terminally acetylated di-, tri- and tetrapeptides in the form of C-terminal ethyl, n-propyl, isopropyl, n-butyl and tert-butyl esters and cationized by the attachment of Li(+), Na(+) and Ag(+). While methyl ester versions of the metal cationized peptides primarily eliminate H(2)O following collisional activation and dissociation, the ethyl, propyl and butyl ester versions of the peptides exhibit a dissociation pathway consistent with gamma-hydrogen transfer to the C-terminal carbonyl group, with associated elimination of an alkene, in a McLafferty-type rearrangement. The rearrangement leaves a metal cationized, free-acid form of the peptide, as confirmed by comparing the multi-stage CID of rearrangement products generated from peptide esters with the CID of corresponding metal cationized free-acid peptides. The transfer of a gamma-hydrogen in the rearrangement reaction was confirmed by investigating the CID of ethyl esters for which the terminal methyl group was labeled with deuterium. We found that the rearrangement product was significantly more abundant, relative to other product ions, when derived from isopropyl and tert-butyl esters than from ethyl, n-propyl or n-butyl ester analogues.  相似文献   

12.
The mechanism of the collision-induced fragmentation of peracetylated methyl-α-D-glucopyranoside was investigated using deuterium-labelled acetates and sequential mass spectrometry. Loss of the substituent at C(1), the anomeric carbon, yields an ion of m/z 331, [C14H19O9]+. This ion further dissociates via two pathways, the first including m/z 271, [C12H15O7]+, 169, [C8H9O4]+ and 109, [C6H5O2]+, and the second including m/z 211, [C10H11O5]+, 169, [C8H9O4]+ and 127 [C6H7O3]+. The first path proceeds via loss of acetate at C(3), followed by a single-step concerted loss of acetates from C(2) and C(4), and ending with loss of acetate from C(6). The second path proceeds predominantly via loss of acetates from C(3) and C(4), elimination of ketene from the C(2)-acetate and finally loss of ketene from the acetate at C(6). This path is also characterized by an ill-defined series of parallel decomposition reactions involving acetates from other sites on the molecule. At low collision energy, and in the absence of collision gas (unimolecular reaction conditions), the former pathway predominates; m/z 331 dissociates via loss of acetate at C(3), followed by a single-step concerted loss of acetates from C(2) and C(4).  相似文献   

13.
Singly and doubly charged cluster ions of ammonium tetrafluoroborate (NH4BF4) with general formula [(NH4BF4)nNH4]+ and [(NH4BF4)m(NH4)2]2+, respectively, were generated by electrospray ionization (ESI) and their fragmentation examined using collision-induced dissociation (CID) and ion-trap tandem mass spectrometry. CID of [(NH4BF4)nNH4]+ caused the loss of one or more neutral NH4BF4 units. The n = 2 cluster, [(NH4BF4)2NH4]+, was unique in that it also exhibited a dissociation pathway in which HBF4 was eliminated to create [(NH4BF4)(NH3)NH4]+. Dissociation of [(NH4BF4)m(NH4)2]2+ occurred through two general pathways: (a) 'fission' to produce singly charged cluster ions and (b) elimination of one or more neutral NH4BF4 units to leave doubly charged product ions. CID profiles, and measurements of changing precursor and product ion signal intensity as a function of applied collision voltage, were collected for [(NH4BF4)nNH4]+ and compared with those for analogous [(NaBF4)nNa]+ and [(KBF4)nK]+ ions to determine the influence of the cation on the relative stability of cluster ions. In general, the [(NH4BF4)nNH4]+ clusters were found to be easier to dissociate than both the sodium and potassium clusters of comparable size, with [(KBF4)nK]+ ions the most difficult to dissociate.  相似文献   

14.
Gas-phase dissociation of model locked nucleic acid (LNA) oligonucleotides and functional LNA-DNA chimeras have been investigated as a function of precursor ion charge state using ion trap collision-induced dissociation (CID). For the model LNA 5 and 8 mer, containing all four LNA monomers in the sequence, cleavage of all backbone bonds, generating a/w-, b/x-, c/y-, and d/z-ions, was observed with no significant preference at lower charge states. Base loss ions, except loss of thymine, from the cleavage of N-glycosidic bonds were also present. In general, complete sequence coverage was achieved in all charge states. For the two LNA-DNA chimeras, however, dramatic differences in the relative contributions of the competing dissociation channels were observed among different precursor ion charge states. At lower charge states, sequence information limited to the a-Base/w-fragment ions from cleavage of the 3′C-O bond of DNA nucleotides, except thymidine (dT), was acquired from CID of both the LNA gapmer and mixmer ions. On the other hand, extensive fragmentation from various dissociation channels was observed from post-ion/ion ion trap CID of the higher charge state ions of both LNA-DNA chimeras. This report demonstrates that tandem mass spectrometry is effective in the sequence characterization of LNA oligonucleotides and LNA-DNA chimeric therapeutics.  相似文献   

15.
Complications with the gas chromatographic analysis of steroids prompted the use of alternative techniques for their identification. High-performance liquid chromatography/mass spectrometry with atmospheric pressure ionization allowed the collection of data for structural identification of these compounds. The objective of this study was to investigate the up-front collision-induced dissociation (UFCID) electrospray ionization (ESI) mass spectra of testosterone and monohydroxylated testosterones. The positive ion UFCID ESI mass spectrum of testosterone showed three significant ions at m/z 97, 109 and 123. The relative abundance of these ions in the UFCID ESI mass spectra of monohydroxylated testosterones varied with the position of the hydroxy group. Statistical data allowed the prediction of hydroxy group position on testosterone by evaluation of the relative abundance of the m/z 97, 109, 121 and 123 ions. Data from the ESI mass spectral analysis of testosterone in a deuterated solvent and from the analysis of cholestenone and 4-androstene-3 beta, 17 beta-diol indicated that the initial ionization of testosterone occurred at the 3-one position. CID parent ion monitoring analyses of the m/z 97, 109 and 123 ions indicated that each resulted from different fragmentation mechanisms and originated directly from the [M + H]+ parent ion. The elemental composition of these fragment ions is proposed based on evidence gathered from the CID analysis of the pseudo-molecular ions of [1,2-2H2]-, [2,2,4,6,6-2H5]-, [6,7-2H2]-, [7-2H]-, [19,19,19-2H3]- and [3,4-13C2]testosterone. The structure and a possible mechanism of formation of the m/z 109 and 123 ions is presented. The results of this study advance the understanding of the mechanisms of collision-induced fragmentation of ions.  相似文献   

16.
The number and types of diagnostic ions obtained by infrared multiphoton dissociation (IRMPD) and collision-induced dissociation (CID) were evaluated for supercharged peptide ions created by electrospray ionization of solutions spiked with m-nitrobenzyl alcohol. IRMPD of supercharged peptide ions increased the sequence coverage compared with that obtained by CID for all charge states investigated. The number of diagnostic ions increased with the charge state for IRMPD; however, this trend was not consistent for CID because the supercharged ions did not always yield the greatest number of diagnostic ions. Significantly different fragmentation pathways were observed for the different charge states upon CID or IRMPD with the latter yielding far more immonium ions and often fewer uninformative ammonia, water, and phosphoric acid neutral losses. Pulsed-Q dissociation resulted in an increase in the number of internal product ions, a decrease in sequence-informative ions, and reduced overall ion abundances. The enhanced sequence coverage afforded by IRMPD of supercharged ions was demonstrated for a variety of model peptides, as well as for a tryptic digest of cytochrome c.  相似文献   

17.
《Chemical physics》1986,101(2):299-309
Collision-induced dissociation of a 5–10 keV N2+ beam impinging on a helium target has been reinvestigated by translational spectroscopy. The laboratory kinetic energy distribution of N+ fragments exhibits height structures on a continuum. They correspond to N+ and N fragments ejected in the c.m. frame with kinetic energies W of 4.75, 6.4, 6.8 and 8.1 eV and they are interpreted as transitions into excited states of N2+ lying at more than 30 eV above the ground state of N2. The experimental W distribution extending over 12 eV is compared to distributions calculated using the model of vertical Franck—Condon electronic excitation with different assumptions for the initial and final states.  相似文献   

18.
The collision-induced dissociation (CID) of protonated buprenorphine ([M+H](+) ) and four related compounds was studied by electrospray quadrupole/time-of-flight mass spectrometry (ESI-QTOF MS). The fragmentation pathways were investigated by using energy-dependent CID and pseudo-MS(3) (in-source CID combined with tandem mass spectrometry (MS/MS)) methods. The first steps of the fragmentation are the parallel losses of the substituents from the non-aromatic ring moieties. Depending on the applied collision energies, a large number of further fragment ions arising from the cross-ring cleavages of the core-ring structure were observed. Based on the experimental results, a generalized fragmentation scheme was developed for the five buprenorphine derivatives highlighting the differences for the alternatively substituted compounds. The collision-energy-dependent fragmentation profile of buprenorphine is visualized in a two-dimensional plot to aid its fingerprint identification.  相似文献   

19.
Electron capture dissociation (ECD) and collision-induced dissociation (CID), the two complementary fragmentation techniques, are demonstrated to be effective in the detection and localization of the methionine sulfoxide [Met(O)] residues in peptides using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The presence of Met(O) can be easily recognized in the low-energy CID spectrum showing the characteristic loss of methanesulfenic acid (CH(3)SOH, 64 Da) from the side chain of Met(O). The position of Met(O) can then be localized by ECD which is capable of providing extensive peptide backbone fragmentation without detaching the labile Met(O) side chain. We studied CID and ECD of several Met(O)-containing peptides that included the 44-residue human growth hormone-releasing factor (GRF) and the human atrial natriuretic peptide (ANP). The distinction and complementarity of the two fragmentation techniques were particularly remarkable in their effects on ANP, a disulfide bond-containing peptide. While the predominant fragmentation pathway in CID of ANP was the loss of CH(3)SOH (64 Da) from the molecular ion, ECD of ANP resulted in many sequence-informative products, including those from cleavages within the disulfide-bonded cyclic structure, to allow for the direct localization of Met(O) without the typical procedures for disulfide bond reduction followed by [bond]SH alkylation.  相似文献   

20.
A new close-coupling scheme for the numerical calculation of quantum-mechanical probabilities for collision-induced dissociation of a diatomic molecule by an atom is presented. Fully converged preliminary results for a collinear model are given for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号