首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

2.
BN coatings were deposited on carbon fibers by dip coating method. The deposited coatings were characterized by scanning electron microscopy, Fourier‐transformed infrared spectroscopy, X‐ray photoelectron spectroscopy and X‐ray diffraction. The influence of temperature on composition and structure of the coatings was investigated. Composition and structure examinations revealed that the crystallinity of the coatings increased with the increasing temperature, and the coating is a mixture of little oxides, turbostratic boron nitride and hexagonal boron nitride. Furthermore, experiments were also conducted in order to describe the growth mechanism, thus forming the basis of future growth of BN coating on fibers by dip coating. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A fully bio‐based benzoxazine, 3‐furfuryl‐8‐methoxy‐3,4‐dihydro‐2H‐1,3‐benzoxazine (Bzf), has been prepared using guaiacol, furfurylamine, and paraformaldehyde as raw materials. Its chemical structure has been characterized by 1H and 13C NMR, FTIR, and elemental analysis. The polymerization behavior of Bzf in the presence of methyl p‐toluenesulfonate (PTSM) has been studied by FTIR and DSC, and the thermal stability of the cured resin has been evaluated by thermogravimetric analysis. It was found that PTSM is a good promoter that serves to avoid thermal decomposition of the bio‐based monomer during the curing process at high temperature. In contrast to the situation with neat Bzf, the presence of PTSM (5 mol % for Bzf) significantly improves the polymerization behaviors, including a decrease in the polymerization temperature from 240 to 174 °C, a shortening of the time required to reach the gel point on heating at 200 °C from 47 to 20 min, and an increase in the char yield of the cured resin from 53 to 62%. Moreover, these observed experimental results on the promoting effect of PTSM are interpreted in terms of several possible mechanistic schemes, which involve a catalytic effect on the dissociation of C? O bonds in both the coordination ring‐opening reaction and the rearrangement from a phenoxy structure to a phenolic structure. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Novel high temperature-resistant coatings with high mechanical strength and thermal-insulating performance were prepared with poly(ether nitrile ketone)(PPENK) resin as matrix and hollow glass microspheres(HGMs) as thermal-insulating filler. The corresponding mechanical and thermal-insulating study indicated that the mechanical properties of the coatings decreased with the increase of HGM content,and were improved after surface modification of HGM by KH570 resulting in enhancement of interaction between HGM and PPENK resin. The thermal conductivity of HGM/PPENK thermal-insulating coating decreased with the increase of HGM content and coating thickness, along with the decrease of the true density. It also showed slight increase trend due to HGMs surface modification. The HGM/PPENK coating filled with modified HGMs showed better thermal resistance than that of unmodified HGM/PPENK coating. The thermal decomposition temperature at 5%weight loss of the coating containing modified HGMs was 10 °C lower than that of pure PPENK, and 40 °C higher than that of neat HGM/PPENK coating. The coating exhibited commendable appearance after 400 °C for 30 min. The merits of HGM/PPENK-based thermal coatings obviously demonstrated promising prospect in thermal protection fields.  相似文献   

5.
A new isothermally based cure kinetic model for the prepreg was presented using an industrially supplied prepreg rather than neat resin. The matrix resin was bismaleimide(BMI)resin,and the reinforcement was carbon fiber T700-12S. A series of isothermal Differential Scanning Calorimetry(DSC)tests were performed and analyzed by the proposed nth-order reaction model. An increase in the cure rate was observed at the higher temperature in both neat and prepreg. After reaching the peak value,the cure rate of resin dropped off faster in prepreg,resulting in a lower average value of the ultimate heat of reaction. The presence of carbon fiber was found to significantly impact the curing behavior of the resin,leading to significant changes from the neat resin kinetic parameters. The carbon fibers imposed restrictions on the molecular mobility of reactive species,reduced the extent of polymerization within the system and did not change the cure mechanism of resin.  相似文献   

6.
In the search for new packaging materials for the electrical/electronics industry, three types of polymer composites have been studied. Silicone/boron nitride powders, polyurethane/alumina powders, and polyurethane/carbon fibers have all been synthesized to study the moisture–absorption kinetics, thermal conductivities, and the dielectric loss spectra under various levels of humidity. The water uptake data indicate that water molecules are absorbed not only by the polymer matrix, but also by the interfaces introduced by the fillers. For all materials, the dielectric relaxation spectroscopy shows the presence of a peak in the 175–200 K range, which is largely due to absorbed water. The silicone/boron nitride samples absorbed the least amount of moisture. Incorporating this result with the thermal conductivity data of the three types of polymer composites, it is concluded that silicone polymers embedded with boron nitride can best serve as the coating for the electronic devices that require heat dissipation and moisture resistance, in addition to electrical insulation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2259–2265, 1998  相似文献   

7.
A diamine‐based benzoxazine monomer (Bz) and a liquid crystalline epoxy monomer (LCE) are synthesized, respectively. Subsequently, a benzoxazine‐epoxy interpenetrating polymer network (PBEI) containing liquid crystalline structures is obtained by sequential curing of the LCE and the Bz in the presence of imidazole. The results show that the preferential curing of LCE plays a key role in the formation mechanism of liquid crystalline phase. Due to the introduction of liquid crystalline structures, the thermal conductivity of PBEI increases with increasing content of LCE. When the content of LCE is 80 wt %, the thermal conductivity reaches 0.32 W m?1 K?1. Additionally, the heat‐resistance of PBEI is superior to liquid crystalline epoxy resin. Among them, PBEI55 containing equal weight of Bz and LCE has better comprehensive performance. Its thermal conductivity, glass transition temperature, and the 5 % weight loss temperature are 0.28 W m?1 K?1, 160 °C, and 339 °C, respectively. By introducing boron nitride (BN) fillers into PBEI55, a composite of PBEI/BN with the highest thermal conductivity of 3.00 W m?1 K?1 is obtained. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1813–1821  相似文献   

8.
The effect of sized carbon fibers on the solid-state cure of poly(p-phenylene sulfide) (PPS) was studied using differential scanning calorimetry. PPS resin reinforced with sized carbon fiber exhibited the largest cure peak for all cure temperatures and showed a second peak at low cure temperature which was absent in both PPS reinforced with desized carbon fiber and neat PPS resin. In a separate experiment in which epoxy prepolymer/PPS mixture was cured, the exothermic reaction was related to the presence of the epoxy sizing used on the carbon fiber. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
A polyaddition system consisted of a bifunctional Nn‐propyl benzoxazine and 2‐methylresorcinol ( MR ) that proceeds at ambient temperature has been developed. In this system, the aromatic ring of MR acted as a bifunctional monomer, reacting with a two equivalent amount of benzoxazine moieties via their ring‐opening reaction. The polyaddition gave the corresponding linear polymer bearing phenolic moieties bridged by Mannich‐type linkage in the main chain. The linear polymer had a high glass transition temperature, which was comparable to that of the linear polybenzoxazine synthesized by the ring‐opening polymerization of a monofunctional Nn‐propyl benzoxazine. The employment of a bifunctional N‐allyl benzoxazine in the polyaddition system resulted in the formation of the corresponding polymer with allyl pendants, which exhibited improved heat resistance due to its thermally induced crosslinking reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3867–3872  相似文献   

10.
To evaluate the influence of the electronic effects on the polymerization temperature, we looked at several 3‐phenyl‐3,4‐dihydro‐2‐H‐1,3‐benzoxazine monomers with electron‐withdrawing or electron‐donating groups in the 6 and 4′ positions. The monomers were synthesized and characterized using different synthetic methods to achieve the best possible results. The thermal polymerization of these benzoxazine monomers was analyzed by differential scanning calorimetry, and the polymerization behavior and the polymer characteristics were related to the electronic character of the substituent and the polymerization mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3353–3366, 2008  相似文献   

11.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The autocatalytic thermal polymerization behavior of three benzoxazine monomers containing carboxylic acid functionalities is reported. Several mixtures of these carboxylic monomers and 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine were prepared and their thermal polymerization behavior was analyzed by differential scanning calorimetry. The acid character of these reactive monomers increases the concentration of oxonium species, thus catalyzing the benzoxazine ring opening reaction. In this way the polymerization temperature decreased by as much as 100 °C in some cases. The existence of decarboxylation processes at high temperatures has been established by FTIR‐ATR and related to the increase in thermal stability observed by TGA in some cases. A relationship between the presence of carboxylic groups in the resulting materials and their flame retardancy behavior has also been established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6091–6101, 2008  相似文献   

13.
A phenol/aniline type monofunctional benzoxazine monomer, PH‐a , is synthesized and highly purified to study the intrinsic thermal ring‐opening polymerization of benzoxazines without the influence of any impurity. The successful synthesis of the monomer and its corresponding chemical structure are confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Purity of the compound is evaluated through differential scanning calorimetry (DSC) as well as elemental analysis (EA). Moreover, the thermal behavior of benzoxazine monomer toward polymerization is also studied by DSC, indicating that the highly purified benzoxazine monomer actually polymerize upon heating. The results present evidence of an intrinsic tendency for 1,3‐benzoxazines to undergo thermally induced ring‐opening polymerization upon heating only without any impurity participating during the reaction. This reveals that polybenzoxazines can be obtained by both the traditional thermally accelerated (or activated) polymerization, where impurities or purposefully added initiators are involved in the reaction; or, by the classic thermal polymerization, where only heat is enough to initiate the reaction. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3434–3445  相似文献   

14.
含氟高分子/SiO_2杂化疏水材料的制备及涂层表面性质   总被引:1,自引:0,他引:1  
采用自由基溶液聚合与溶胶-凝胶法相结合的方法制备了含氟高分子/SiO2杂化疏水材料.通过甲基丙烯酸十二氟庚酯(FA)与乙烯基三乙氧基硅烷(VTES)共聚合成了含氟硅共聚物(PFAS),进一步通过原硅酸乙酯(TEOS)与PFAS共聚物溶液共水解缩聚制备了具有含氟侧基的碳碳主链高分子和硅氧网络的含氟高分子/SiO2杂化疏水材料.研究结果表明,SiO2组分含量提高可以显著增加杂化材料薄膜的涂敷厚度,改善其耐久性能,而对杂化材料疏水性能的影响不大.  相似文献   

15.
Poly(benzoxazine-urethane)/graphene oxide [poly(Bz-PU)/GO] composites were successfully prepared by blending benzoxazine (Bz) with graphene oxide (GO) and isocyanato (NCO)-terminated polyurethane prepolymer (PU), followed by thermally activated polymerization of the blends. The network was formed via the mutual reaction and intermolecular interaction among the hydroxyl of GO, NCO groups of PU and phenolic hydroxyl of Bz. The toughness shown from SEM images and tensile properties of polybenzoxazine (PBz) plastic composites can effectively be improved by alloying with PU and GO. The onset curing temperature and exothermic peak maximums of the polymerization obtained from differential scanning calorimetry decreased resulted from the GO addition. The thermogravimetric analysis showed that the incorporation of 0.5 wt% of GO slightly improved the thermal stability of poly(Bz-PU)/GO composites. Additionally, the storage modulus improved and the glass transition temperature (Tg) increased gradually as the increasing GO content not beyond a certain amount. Finally, the exothermic peaks of the polymerization were shifted to lower temperature, and the thermal stability increased for the ternary composites as the number average molecular weights (Mn) of polyol decreased.  相似文献   

16.
A novel thermosetting resin based on cyano functionalized benzoxazine (BZCN) has been synthesized from 2,6-bis(4-diaminobenzoxy)benzonitrile phenol and formaldehyde by solution reaction. The structure of the monomer is supported by FTIR, 1H NMR and 13C NMR spectra, which have exhibited that the reactive benzoxazine rings and cyano group exist in the molecular structure of BZCN. The curing reactions of BZCN are monitored by the disappearance of the nitrile peak and the tri-substituted benzene ring that is attached with oxazine ring peak at 2231 and 930 cm−1, respectively. The complete cured materials could achieve char yields up to 70% at 800 °C in nitrogen atmosphere, above 64% at 600 °C in air (20% oxygen) environments and the glass transition temperature up to 250 °C. The thermally activated curing polymerization reaction of BZCN follows multiple polymerization mechanisms via the ring-opening polymerization of oxazine rings and the triazine ring-formation of cyano groups, which contribute to the stability of the polymer.  相似文献   

17.
The cure reaction of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) epoxy resin with 4,4'-diaminodiphenyl methane (DDM) has been studied by using DSC. Instead of one exothermic peak, two exothermic peaks, indicative of a complex reaction mechanism, are shown in the DSC curve of TGDDM-DDM mixtures in nonisothermal cure experiments when the content of DDM is lower than stoichiometric ratio. The result of the kinetic analysis of the cure reaction shows that the activation energy of the lower temperature exotherm peak is about 56 kJ/mol and that of the higher temperature exotherm peak is about 136 kJ/mol. The lower temperature cure reaction peak can be attributed to the primary amine-epoxide and secondary amine-epoxide reactions, and the higher temperature cure reaction peak can be attributed to the epoxide-hydroxy reaction under catalysis of tertiary amine in the TGDDM epoxy resin. Because the network density of the cured epoxy resin is determined by these two reactions, the content of DDM has little effect on the glass transition temperature of cured epoxy resin.  相似文献   

18.
Polymerization kinetics and gloss of different formulations of coatings at different UV curing conditions were studied. The results showed that the photoinitiator type, its concentration, sample coating thickness, as well as the UV light intensity were the most significant factors affecting the polymerization course and the gloss of UV-cured films. The increasing concentration of the photoinitiator and the UV light intensity significantly decreased the gloss of the cured surface. The influence of the sample coating thickness on the kinetics and final gloss was also considerable.  相似文献   

19.
Aside from their outstanding properties such as thermal and chemical stability and excellent mechanical performance, benzoxazines suffer from high polymerization temperatures. Isomeric mixtures of bifunctional benzoxazines based on resorcinol proved already to be highly reactive monomers enabling polymerizations at lower temperatures. This contribution describes the polymerization behavior of single benzoxazine isomers and furthermore the influence of different substituents at the aniline moiety on the curing temperature. Single isomers of bifunctional benzoxazines are now accessible in a straightforward one‐pot synthesis starting from resorcinol and the appropriate N‐phenyl functionalized aniline component. The asymmetric benzoxazine monomers bearing no (R‐a: Tpeak = 179 °C) or electron‐donating substituents in meta position to N (R‐3,5dma: Tpeak = 183 °C) succeed in lowering the polymerization temperature. Additionally, the impact of several initiating systems was studied resulting in a decrease of the polymerization temperature for all studied resorcinol derived benzoxazine isomers (down to 144 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1243–1251  相似文献   

20.
The influence of ion-plasma coatings made from high-hardness metal compounds on the erosion and corrosion resistance and mechanical properties of the alloy (substrate) + coating system is studied. The influence of the thickness, composition, and design of coatings based on metal nitrides and carbides on the relative gas-abrasive wear resistance of alloy+coating compositions in a gas-abrasive flux of quartz sand is discussed. It is shown that the zirconium nitride coating provides the best protection for compressor blades made of titanium alloys, without any decrease in fatigue resistance of the alloys, and chromium carbide coating is the most appropriate protection for steel compressor blades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号