首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copolymerization of (4‐hexylphenyl)allene and of (4‐dodecylphenyl)allene with carbon monoxide (1 atm) catalyzed by Rh[η3‐CH(Ar′)C{C(CHAr′)CH2C (CHAr′)CH2CH2CHCHAr′}CH2](PPh3)2 (A; Ar′ = C6H4OMe‐p) gives the corresponding polyketones: I‐[—CO—C(CHAr)—CH2—]n [1: Ar = C6H4C6H13p, 2 : Ar = C6H4C12H25p; I = CH2C(CHAr′)C(CHAr′)CH2C(CHAr′)CH2CH2CHCHAr′]. Molecular weights of the polyketone prepared from (4‐hexylphenyl)allene and CO are similar to the calculated from the monomer to initiator ratios until the molecular weight reaches to 45,000, indicating the living polymerization. Melting points of the polyketones I‐[—CO—C(CHC6H4R‐p)—CH2—]n (n = ca. 100) increase in the order R = C12H25 < C6H13 < C4H9 < CH3 < H. Block and random copolymerization of phenylallene and (4‐alkylphenyl)allene with carbon monoxide gives the new copoly‐ ketones. The polymerization of a mixture of (4‐methylphenyl)allene and smaller amounts of bis(allenyl)benzene under CO afforded the polyketone with a crosslinked structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1505–1511, 2000  相似文献   

2.
This paper focuses on two recent topics in living cationic polymerization of vinyl monomers, i.e., (a) Development of new initiating systems: RCOOH/Lewis acid for vinyl ethers; CH3CH(C6H5)Cl/SnCl4/nBu4NCl for styrene. (b) Synthesis of shape-controlled poly(vinyl ethers): Tri-armed star polymers; Multi-armed spherical polymers. For the RCOOH-based systems, a generalized concept of living cationic polymerization was discussed on the basis of the effects of the counteranions (or R) and Lewis acids (ZnCl2 and EtAlCl2). The CH3CH(C6H5)Cl-based system permitted a truly living cationic polymerization of styrene. The tri- and multi-armed poly(vinyl ethers) included new amphiphilic polymers of unique topology, solubility, etc., all of which were prepared by living cationic polymerization.  相似文献   

3.
Telechelic ( 8 ) and end-functionalized four-arm star polymers ( 9 ) were synthesized through the coupling reactions of end-functionalized living poly(isobutyl vinyl ether) ( 5; DP n ~ 10) with the bi-and tetrafunctional silyl enol ethers, H4-nC? [CH2OC6H4C(OSiMe3) = CH2]n ( 3: n = 2; 4: n = 4). The precursor polymers 5 were prepared by living cationic polymerization with functionalized initiators, CH3CH(Cl)OCH2CH2X(6), in conjunction with zinc chloride in methylene chloride at ?15°C. The initiators 6 were obtained by the addition of hydrogen chloride gas to vinyl ethers bearing pendant functional groups X , including acetoxy [? OC(O)CH3], styryl (? OCH2C6H4-p-CH = CH2), and methacryloyl [? OC(O)C(CH3) = CH2]. The coupling reactions with 3 and 4 in methylene chloride at ?15°C for 24 h afforded the end-functionalized multiarmed polymers ( 8 and 9 ) in high yield (>91%), where those with styryl or methacryloyl groups are new multifunctional macromonomers. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
1‐Pentynes containing different amino acid moieties and pendant terminal groups {HC?C(CH2)2CONHC(R′)HCO2CH3, where R′ = CH3, CH2CH(CH3)2, CH2C6H5, and HC?C(CH2)2CONHC[CH2CH(CH2)3]HCO2‐(1R,2S,5R)‐(+)‐menthol} have been designed and synthesized. The polymerizations of the monomers are effected by organorhodium catalysts, giving soluble polymers with moderate molecular weights in satisfactory yields. The structures and properties of the polymers have been characterized and evaluated with infrared, nuclear magnetic resonance, thermogravimetric analysis, circular dichroism, and ultraviolet analyses. All the polymers are thermally stable (≥300 °C) and show strong circular dichroism signals at ~310 nm because of the helicity of the polyene backbone. The circular dichroism and ultraviolet absorptions of the polymers can be tuned with a solvent. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6190–6201, 2006  相似文献   

5.
In the cationic polymerization of isobutyl vinyl ether (IBVE) with binary initiating systems consisting of a protonic acid as an initiator and a Lewis acid as an activator/catalyst, phosphoric acid derivatives [(RO)2POOH] coupled with SnCl4 gave highly isotactic poly(IBVE)s, whereas those with a bulky substituent (R), [C4H9CH(C2H5)CH2O]2POOH ( 7 ) and (n‐C10H21)2POOH ( 8 ), led to the highest isotacticity [meso dyad (m) = 86%]. In contrast, isospecificity was lower with IBVE–HCl and CF3COOH under the same conditions. From the effects of the polymerization temperature (−78 to 0 °C), it was concluded that the high isospecificity with 7 and 8 was due to an enthalpic factor. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1067–1074, 2001  相似文献   

6.
A hydrophilic ruthenium complex with ionic phosphine ligands { 1 : RuCl2[P(3‐C6H4SO3Na)(C6H5)2]2} induced controlled radical polymerization of 2‐hydroxyethyl methacrylate (HEMA) in methanol under homogeneous conditions; the initiator was a chloride (R‐Cl) such as CHCl2COPh. The number‐average molecular weights of poly(HEMA) increased in direct proportion to monomer conversion, and the molecular weight distributions were relatively narrow (Mw/Mn = 1.4–1.7). A similar living radical polymerization was possible with (MMA)2‐Cl [(CH3)2C(CO2CH3)CH2C(CH3)(CO2CH3)Cl] as an initiator coupled with amine additives such as n‐Bu3N. In a similar homogeneous system in methanol, methyl methacrylate (MMA) could also be polymerized in living fashion with the R‐Cl/ 1 initiating system. Especially for such hydrophobic polymers, the water‐soluble ruthenium catalyst was readily removed from the polymers by simple washing with an aqueous dilute acid. This system can be applied to the direct synthesis of amphiphilic random and block copolymers of HEMA and MMA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2055–2065, 2002  相似文献   

7.
5 -C5H4[CH(CH3)OC(O)CH = CH2])Mn(CO)3, {η5—C5[CH-(CH3)OC(O)C(CH3)=CH2]]Mn(CO)3, and {η5—C5H4[CH(CH3)-OC(O)CH=C(CH3)2])Mn(CO)3 were synthesized (63, 57, and 51%, respectively) from {η5—C5H4[CH(CH3)OH])Mn(CO)3, toluene-sulfonic acid, and the acrylic, methacrylic, and dimethylacrylic acids, and from (η5-C5H4[CH(CH3)OH]}Mn(CO)3, pyridine, and the acrylic, methacrylic, and dimethylacrylic acyl chlorides [26, 48, and 25% (impure), respectively]. No product was obtained when NaH was used as the base in the latter method. The acrylate and methacrylate monomers were bulk homopolymerized at 65°C with AIBN (75% yield, Mn = 88,550 g/mol; 78% yield, Mn = 349,350 g/mol, respectively). The dimethylacrylate did not polymerize under these conditions. The polymers lost vinylcymantrene upon heating to 257 and 279°C, respectively. The polymers did not exhibit a clear Tg but were observed to soften at 85 and 160°C, respectively, and they could be pulled into fibers.  相似文献   

8.
Four new mixed‐ring zirconium completes, [CH2 = CH(CH2)n ‐C5H4](RC5H4)ZrCl2 [n = l, R = CH3OCH2CH2(3); n = 2, R = CH3OCH2CH2 (4); n = 2, R=Me3Si (5); n = 2, R = allyl (6)], have been prepared by the reaction of CH2 = CH(CH2)n C5H4ZrCl3, DME[n = l (1); n = 2 (2)] with RC5H4Li. When activated with methylaluminoxane (MAO), the catalytic activities of the above complexes in ethylene polymerization were tested. Complexes 5 and 6 show high activities similar to Cp2ZrCl2. Introduction of methoxyethyl group into Cp‐ligand dramatically decreases the catalytic activities of complexes 3 and 4, which can be overcome by increasing the amount of MAO. For complex 5, the dependence of activity and molecular weight (Mη) on the Al/Zr ratio, the polymerization time (tP), polymerization temperature (TP) and the polymerization solvent volume (V) was investigated.  相似文献   

9.
Cationic polymerization of 2,2-bis{4-[(2-vinyloxy)ethoxy]phenyl}propane [CH2CH O CH2CH2O C6H4 C(CH3)2 C6H4 OCH2CH2 O CHCH2; 2], a divinyl ether with oxyethylene units adjacent to the polymerizable vinyl ether groups and a bulky central spacer, was investigated in CH2Cl2 at 0°C with the diphenyl phosphate [(C6H5O)2P(O)OH]/zinc chloride (ZnCl2) initiating system. The polymerization proceeded quantitatively and gave soluble polymers up to 85% monomer conversion. In the same fashion as the polymerization of 1,4-bis[2-vinyloxy(ethoxy)]benzene (CH2CH O CH2CH2O C6H4 OCH2CH2 O CHCH2; 1) that we already studied, the content of the unreacted pendant vinyl ether groups of the produced soluble polymers decreased with monomer conversion, and almost all the pendant vinyl ether groups were consumed in the soluble products prior to gelation. Alternatively, endo-type double bonds were gradually formed in the polymer main chains by chain transfer reactions and other side reactions as the polymerization proceeded. The polymerization behavior of isobutyl vinyl ether (3), a monofunctional vinyl ether, under the same conditions, showed that the endo-type olefins in the polymer backbones are of no polymerization ability with the growing active species involved in the present polymerization systems. These results indicate that the intermolecular crosslinking reactions occurred primarily by the pendant vinyl ether groups, and the final stage of crosslinking process leading to gelation also may occur by the small amount of the residual pendant vinyl ether groups (supposedly less than 2%). The formation of the soluble polymers that almost lack the unreacted pendant vinyl ether groups is most likely due to the frequent occurrence of intramolecular crosslinking reactions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1931–1941, 1999  相似文献   

10.
A general procedure, giving high yields for the synthesis of (Ph3P)2Pt(CCR)2 complexes (R = C6H5, C(CH2)CH3, (CH2)6CCH, CH2OH, CH(OH)CH3, CH(OH)C6H5, CH2CH(OH)CH3, C(OH)(CH3)CH3, C6H10OH, C(OH)(CH3)CH2CH3, CH2NHCH3, CH2NHCH2C6H5, CH2N(CH3)2, CH2N(C2H5)2) is reported. On the basis of the low frequency IR spectra a trans structure is proposed for all complexes. UV spectra are also reported.  相似文献   

11.
Five-membered cyclic esters of phosphoric acid of the general formula: ? CH2CH(R)OP(O)-(OR′)O? polymerize readily to solid, soluble polymers of high molecular weight without any rearrangement known for various tri- and pentavalent organophosphorus monomers. 1H-, 13C-, and 31P-NMR spectra of polymers confirmed their linear structure: where R is H, with R′ = CH3, C2H5, n-C3H7, i-C3H7; n-C4H9, CCl3CH2, or C6H5, or R is CH2Cl and R′ is C2H5. The use of n-C4H9Li, (C5H5)2Mg, or (i-C4H9)3Al as initiators leads to polymers with M n = 104–105.  相似文献   

12.
Synthetic routes for the preparation of 3-alkyl-6-phenyl-4(3H)-pteridinones 6 and their corresponding 8-oxides 5 (R = CH3, C2H5, (CH2)2CH3, (CH2)3CH3, CH(CH3)C2H5, CH(CH3)2 and CH(C2H5)CH2OCH(OC2H5)2 are described and their reactivities towards xanthine oxidase from Arthrobacter M-4 are determined. Only the 3-methyl derivative of 6-phenyl-4(3H)-pteridinone and its 8-oxide i. e. 6a and 5a are found to be substrates although their reactivities are still very low. Oxidation takes place at C-2 of the pteridinone nucleus. All the 3-alkyl derivatives are less tightly bound to the enzyme than 6-phenyl-4(3H)-pteridinone. Introduction of the N-oxide at N-8 considerably lowers the binding of the substrates. Inhibition studies have revealed that 3-methyl-6-phenyl-4(3H)-pteridinone ( 6a ) is a non-competitive inhibitor with a Ki-value of 47 μM and the 3-ethyl derivative ( 6b ) an uncompetitive one with a Ki-value of 19.6 μM.  相似文献   

13.
Norbornene polymerizations were carried out using nickel(II) bromide complexes CH{C(R)NAr}2NiBr ( 1 , R = CH3, Ar = 2, 6 ? iPr2C6H3; 2 , R = CH3, Ar = 2, 6‐Me2C6H3; 3 , R = CF3, Ar = 2, 6 ? iPr2C6H3; 4 , R = CF3, Ar = 2, 6‐Me2C6H3) in the presence of methylaluminoxane. Compound 3 is the most active norbornene polymerization catalyst of all the nickel complexes tested. The activity of theses catalysts increases with increases in steric bulk of the substituents on the aryl rings. The electronic nature of the ligand backbone also affects the activity. The resulting polynorbornenes are vinyl type by IR and NMR analyses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The dimerization of methyl methacrylate, ethyl methacrylate, methacrylonitrile, and α-methylstyrene to 2-substituted-1-allylic compounds [CH2?C(X)CH2C(CH3)2X] (X = COOR, C6H5, or CN), and methyl α-ethylacrylate to a 3-substituted-2-allylic compound [CH3CH?C(COOCH3)CH2C(CH3)(C2H5) COOCH3] was carried out by catalytic chain transfer using benzylbis (dimethylglyoximato) (pyridine) cobalt (III). These dimers were then used as addition-fragmentation chain transfer agents in the polymerizations of methyl methacrylate and styrene at 800C or above. Cross-dimers from methacrylic ester-α-methylstyrene and methacrylonitrile-α-methylstyrene mixtures were similarly prepared. Except for those from methyl α-ethylacrylate and methacrylonitrile, all the dimers participated in the addition-fragmentation and the copolymerization to different extents. The dimer of methyl α-ethylacrylate was actually inactive during the styrene and methyl methacrylate polymerizations. The methacrylonitrile dimer was primarily incorporated in the polymer chain through copolymerization. Among the dimer and the cross-dimers from α-methylstyrene with the other monomers, those bearing the α-methylstyrene moiety in the α-substituent [CH2?C(X)CH2C(CH3)2C6H5, X?COOCH3, COOC2H5, and CN] are noted as highly reactive chain transfer agents. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The alkenyl substituted phenoxy–imine complexes [2‐C3H5‐6‐(2, 3, 5, 6‐C6F4H‐N?CH)C6H3O]2TiCl2 (C3H5=? CH2? CH?CH2 or ? CH?CH? CH3) are synthesized and characterized by 1H NMR, 13C NMR, and elemental analysis. When activated by MAO, they show high activity for the polymerization of ethylene to UHMWPE under different conditions (temperatures and polymerization time). Most of the resulting polymers have high molecular weights (>1.0 × 106 g·mol?1) and high melting points as well as crystallinity. To clarify the effect of the alkenyl group on the catalytic performance and the resultant polymer microstructure, the corresponding saturated complexes of type [2‐C3H7?6‐(2, 3, 5, 6‐C6F4H‐N?CH)C6H3O]2TiCl2 where C3H7 = –CH2? CH2? CH3 or ? CH(CH3)2 were synthesized and tested as catalysts in ethylene polymerization under the same reaction conditions. The microstructure and morphologies of these two species of PE samples were fully compared by the analysis of 13C NMR, GPC, DSC, and SEM. As a result, the allyl substituted complex show the highest activity to prepare the highest molecular weight polyethylene of all the catalysts. An interesting feature of the UHMWPE produced by these four catalysts is that they contain only a few short‐chain branches (mainly methyl, isobutyl and 2‐methylhexyl branches) in a low amount (<2.7 branches/1000 C). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3808–3818  相似文献   

16.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

17.
A series of novel (arylimido)vanadium(V) complexes bearing tridentate salicylaldiminato chelating ligands, V(N‐2,6‐Me2C6H3)Cl2[(O‐2‐tBu‐4‐R‐C6H3)CH?ND] (R = H, D = 2‐CH3O? C6H4 ( 2a ); 2‐CH3S? C6H4 ( 2b ); 2‐Ph2P? C6H4 ( 2c ); 8‐C9H6N (quinoline) ( 2d ); CH2C5H4N ( 2e ); R = tBu, D = 2‐Ph2P? C6H4 ( 2f )), were prepared from V(NAr)Cl3 by reacting with 1.0 equiv of the ligands in the presence of triethylamine in tetrahydrofuran. These complexes were characterized by 1H, 13C, 31P, and 51V NMR spectra and elemental analysis. The structures of 2c and 2f were further confirmed by X‐ray crystallographic analysis. These (arylimido)vanadium(V) complexes are effective catalyst precursors for ethylene polymerization in the presence of Et2AlCl as a cocatalyst and ethyl trichloroacetate as a reactivating agent. Complex 2c with a ? PPh2 group in the sidearm was found to exhibit an exceptional activity up to 133800 kg polyethylene/molV h for ethylene polymerization at 75 °C, which is one of the highest activities displayed by homogeneous vanadium(V) catalysts at high temperature. Moreover, high molecular weight polymers with unimodal molecular weight distribution can be obtained, indicating the single site behavior of these catalysts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2633‐2642  相似文献   

18.
2,4-Bismethylthio-1,3,2,4-dithiadiphosphetane 2,4- disulfide, IIa, is prepared from 0,0-dimethyldithiophosphoric acid, Ia, and P4S10 at 160°C. 2,4-Bis(4-phenoxyphenyl)-1,3,2,4- dithiadiphsophetane 2,4-disulfide, IIc, and 2,4-bis(4-phenylthiolophenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide, IId, are prepared at l60°C from P4 S10 and diphenylether and diphenylsulfides, respectively. Carboxylic acids RCOOH(R = CH3 C2H5, n-C3H7, n-C4H9, C6H5CH2, C6H8) react with compound Ia at 130°C to give the corresponding methyl dithioesters. Carboxylic acids RCOOH (R = C6H8-CH2, C6H8) react with compound Ib at 200°C for 15 min to give the corresponding ethyl dithioesters, while low boiling acids (R = CH3, C2H8, n-C3H7) yielded mixtures of the corresponding ethyl dithioester and ethyl carboxylate. Carboxylic acid chlorides RCOCl (R = ClCH2, C2H5, t-C4H5 C6H5CH2, C6H5, P-NO2C6H4) react with compound IIa at 80°C to give the corresponding methyl dithioesters in good yields. S-Substituted thioesters react with IIC at 85°C to give the corresponding dithioesters in good yields. Dihydro2(3H)-furanone, VI, and 5-methyl-2(3H)-furanone, VII, react with IIa at 80°C; to dihydro-2(3H)-thiophenethione, VIII and 2,2'-dithiobis(5-methyl thiophene),IX, respectively. Also XI reacts with IIa,IIc, and IId to give VIII in nearly quantitative yields.  相似文献   

19.
Living cationic polymerization of fluorine‐containing vinyl ethers [CH2?CH? O? C2H4? O? C3H6? CnF2n+1: 5FVE (n = 2), 13FVE (n = 6)] was investigated in various solvents with a CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5 initiating system in the presence of an added base. 5FVE was polymerized quantitatively in toluene at 0 °C, and the obtained polymers had predetermined molecular weights with narrow molecular weight distributions (Mw/Mn < 1.1). On the other hand, for the polymerization of 13FVE, the product polymers precipitated due to their extremely poor solubility in nonfluorinated organic solvents. Therefore, fluorinated solvents such as hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, or α,α,α‐trifluorotoluene, as‐yet uninvestigated for cationic polymerization, were employed. In these solvents, living polymerization was achieved even with 13FVE, yielding well‐defined polymers (Mw/Mn < 1.1, by size exclusion chromatography using a fluorinated solvent as an eluent). The solvents were also shown to be good for living polymerization of isobutyl vinyl ether. The obtained fluorine‐containing polymers underwent temperature‐responsive solubility transitions in organic solvents. Poly(5FVE) showed sensitive upper critical solution temperature (UCST)‐type phase separation behavior in toluene. Copolymers of 13FVE and isobutyl vinyl ether showed UCST‐type phase separation in common organic solvents with different polarities depending on their composition, while a homopolymer of 13FVE was insoluble in all nonfluorinated organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Ring opening metathesis polymerizations (ROMP) of norbornene (NBE), tetracyclododecene (TCD) in the presence of cis-cyclooctene (COE) using vanadium-alkylidene catalyst, V(CHSiMe3)(N-2,6-Cl2C6H3)(OC6F5)(PMe3)2 ( 1 ), were explored. The polymerizations with TCD afforded high-molecular-weight polymers (Mn = 19,500–47,400) with low PDI (Mw/Mn) values (1.18–1.38) which possess microstructure of repeated ring-opened TCD and certain methylene units by incorporation of ring-opened COE on the basis of microstructure analysis by NMR spectra and DSC thermograms; hydrogenated copolymer possessed melting temperature at 294 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3067–3074  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号