共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Ohrlander T. Lindberg A. Wirsn A.‐C. Albertsson 《Journal of polymer science. Part A, Polymer chemistry》1999,37(11):1651-1657
Acrylamide was graft polymerized onto the surface of a biodegradable semicrystalline polyester, poly(ε‐caprolactone). Electron beam irradiation at a dose of 5 Mrad was used to generate initiating species in the polyester. The degradation in vitro at pH 7.4 and 37°C in a phosphate buffer solution was studied for untreated, irradiated and acrylamide‐grafted polymers. In the case of poly(ε‐caprolactone), all materials showed similar behavior in terms of weight loss. No significant decrease in weight was observed up to 40 weeks, after which the loss of weight accelerated. The main differences in degradation behavior were found for the average molecular weights, M̄n and M̄w. Virgin poly(ε‐caprolactone) maintained M̄n and M̄w up to about 40 weeks, whereas the irradiated and grafted poly(ε‐caprolactone) showed similar continuous declines in M̄n and M̄w throughout the degradation period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1651–1657, 1999 相似文献
2.
M. Ohrlander A. Wirsn A.‐C. Albertsson 《Journal of polymer science. Part A, Polymer chemistry》1999,37(11):1643-1649
Poly(ε‐caprolactone) films (TONE® 787) were irradiated by electron beam in air prior to grafting in aqueous solutions of acrylamide. The grafting kinetics and molecular weight of the grafted poly(acrylamide) chains were studied with irradiation doses between 2.5 and 20 Mrad and in the Mohr's salt concentration range of 0.0025–1 wt %. The grafting rate and yield were strongly dependent on the Mohr's salt concentration. By molecular weight analysis of grafted poly(acrylamide) chains, it was shown that the molecular weight is approximately proportional to the mass of the grafted PAAm. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1643–1649, 1999 相似文献
3.
Ulrica Edlund Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2000,38(5):786-796
Morphology is presented as a powerful tool to control the in vitro degradation and drug release characteristics of novel drug delivery microspheres prepared from homopolymer blends of 1,5‐dioxepan‐2‐one, DXO, and L ‐lactide, L‐LA. Their performance in this respect was compared to analogous P(L‐LA‐co‐DXO) microspheres. Blends formed denser and less porous microspheres with a higher degree of matrix crystallinity than copolymers of corresponding L‐LA:DXO composition. The morphology differences of blends and copolymers, further adjustable by means of component ratio, are shown to have a vital impact on the in vitro performance. Sustained drug delivery was obtained from both copolymers and blends. Molecular weight loss was retarded and diffusion‐mediated release was inhibited in the latter case, further delaying the release process. The effects of storage on the physicochemical properties of these systems were evaluated under desiccated and moist conditions for 5 months. Storage‐induced physicochemical changes, such as matrix crystallization and molecular weight decrease, were accelerated at higher relative humidities. P(L‐LA‐co‐DXO) demonstrated higher moisture sensitivity than a PLLA‐PDXO blend of corresponding composition. The more crystalline and dense morphology of blend microspheres may thus be considered an improvement of the storage stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 786–796, 2000 相似文献
4.
Natalia Andronova Anna Finne Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2003,41(15):2412-2423
The copolymerization of 1,5‐dioxepan‐2‐one (DXO) and ε‐caprolactone, initiated by a five‐membered cyclic tin alkoxide initiator, was performed in chloroform at 60 °C. Copolymers with different molar ratios of DXO (25, 40, and 60%) were synthesized and characterized. 13C NMR spectroscopy of the carbonyl region revealed the formation of copolymers with a blocklike structure. Differential scanning calorimetry measurements showed that all the copolymers had a single glass transition between ?57 and ?49 °C and a melting temperature in the range of 30.1–47.7 °C, both of which were correlated with the amount of DXO. An increase in the amount of DXO led to an increase in the glass‐transition temperature and to a decrease in the melting temperature. Dynamic mechanical thermal analysis measurements confirmed the results of the calorimetric analysis, showing a single sharp drop in the storage modulus in the temperature region corresponding to the glass transition. Tensile testing demonstrated good mechanical properties with a tensile strength of 27–39 MPa and an elongation at break of up to 1400%. The morphology of the copolymers was examined with polarized optical microscopy and atomic force microscopy; the films that crystallized from the melt showed a short fibrillar structure (with a length of 0.05–0.4 μm) in contrast to the untreated solution‐cast films. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2412–2423, 2003 相似文献
5.
Kuk Ro Yoon Yong‐Won Lee Jungkyu K. Lee Insung S. Choi 《Macromolecular rapid communications》2004,25(16):1510-1513
Summary: Biodegradable poly(1,5‐dioxepan‐2‐one) (PDXO) was grown directly from Si OH groups of a silica nanoparticle by surface‐initiated, ring‐opening polymerization (SI‐ROP) of 1,5‐dioxepan‐2‐one (DXO). The direct SI‐ROP of DXO was achieved by heating a mixture of Sn(Oct)2, DXO, and the silica nanoparticles (316 nm in diameter) in anhydrous toluene. The resulting silica/PDXO hybrid nanoparticles were characterized by means of 1H NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, and field‐emission scanning electron microscopy.
6.
Maria Ryner Alexandra Valdre Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2002,40(12):2049-2054
New star‐shaped and photocrosslinked poly(1,5‐dioxepan‐2‐one) (PDXO) has been synthesized through ring‐opening polymerization initiated by SnOct2/pentaerythritol. The star‐shaped PDXO was end‐functionalized by acrolyol chloride to form acrylate end groups. The end‐functionalized PDXO was photocrosslinked initiated by 2,2‐dimethoxy‐2‐phenylacetophenone. The gel content ranged from 80 to 99%, indicating a high degree of crosslinking. The thermal properties of the star‐shaped PDXO and the photocrosslinked PDXO were analyzed by differential scanning calorimetry. The glass‐transition temperature was determined to approximately ?32 °C for the crosslinked PDXO. The viscosity numbers were determined for star‐shaped PDXO, with reference to linear homologues. The star‐shaped PDXO had lower viscosity numbers than the linear counterparts. The crosslinked PDXO showed a rather hydrophilic surface as compared with other resorbable polyesters. The advancing contact angle was 64 ± 2, and the receding angle was 57 ± 4. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2049–2054, 2002 相似文献
7.
Rajiv K. Srivastava Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2005,43(18):4206-4216
To avoid organometallic catalysts in the synthesis of poly(1,5‐dioxepan‐2‐one), the enzymatic ring‐opening polymerization of 1,5‐dioxepan‐2‐one (DXO) was performed with lipase CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between the number‐average molecular weight and monomer conversion was observed, and this suggested that the product molecular weight could be controlled by the stoichiometry of the reactants. The monomer consumption followed a first‐order rate law with respect to the monomer, and no chain termination occurred. Water acted as a chain initiator, but it could cause polymer hydrolysis when it exceeded an optimum level. An initial activation via the heating of the enzyme was sufficient to start the polymerization, as the monomer conversion occurred when samples were left at room temperature after an initial heating at 60 °C. A high lipase content led to a high monomer conversion as well as a high molecular weight. An increase in the monomer conversion and molecular weight was observed when the polymerization temperature was increased from 40 to 80 °C. A further increase in the polymerization temperature led to a decrease in the monomer conversion and molecular weight because of the denaturation of the enzyme at elevated temperatures. The polymerization behavior of DXO under lipase CA catalysis was compared with that of ε‐caprolactone (CL). The rate of monomer conversion of DXO was much faster than that of CL, and this may have been due to differences in their specificity toward lipase CA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4206–4216, 2005 相似文献
8.
《先进技术聚合物》2018,29(6):1613-1619
Poly(2‐methyl‐1,5‐pentaneoxamide) ( PM52) with relative viscosity up to 3.3 were synthesized using 2‐methyl‐1,5‐pentanediamine (M52) and dibutyl oxalate via spray/melt polycondensation. The obtained polyoxamide was characterized by FTIR, 1H‐NMR, WAXD, DSC, and TGA. The Tm of PM52 was 200°C with a heat of fusion (ΔHf) of 59.7 J·g−1, crystallization temperature of 125°C, and a crystallization enthalpy (ΔHc) of 42.6 J·g−1. Isothermal crystallization studies revealed a 2‐dimensional crystallization phenomenon which didn't vary with change in crystallization temperature. TGA analysis revealed that the thermal stability of PM52 compared well with commercial PA6, and XRD studies revealed an α form of crystal structure and that the polymers possessed good crystallinity. Saturated water absorption of 4.6 wt% was recorded for the new polyoxamide synthesized as compared with 10.6 wt% for commercial PA6; such properties are good for applications in the food industry, plastics, and electronics industry where dimensional stability is a key requirement. 相似文献
9.
Soo‐Young Park Sang‐Cheol Moon N. Venkatasubramanian Thuy D. Dang Jar‐Wha Lee B. L. Farmer 《Journal of Polymer Science.Polymer Physics》2006,44(14):1948-1957
The rigid‐rod polymers, poly(2,6‐naphthalenebenzobisoxazole) (Naph‐2,6‐PBO) and poly(1,5‐naphthalenebenzobisoxazole) (Naph‐1,5‐PBO) were synthesized by high temperature polycondensation of isomeric naphthalene dicarboxylic acids with 4,6‐diaminoresorcinol dihydrochloride in polyphosphoric acid. Expectedly, these polymers were found to have high thermal as well as thermooxidative stabilities, similar to what has been reported for other polymers of this class. The chain conformations of Naph‐2,6‐PBO and Naph‐1,5‐PBO were trans and the crystal structures of Naph‐2,6‐PBO and Naph‐1,5‐PBO had the three‐dimensional order, although the axial disorder existed for both Naph‐2,6‐PBO and Naph‐1,5‐PBO. Naph‐2,6‐PBO exhibited a more pronounced axial disorder than Naph‐1,5‐PBO because of its more linear shape. The repeat unit distance for Naph‐2,6‐PBO (14.15 Å) was found to be larger compared with that of Naph‐1,5‐PBO (12.45 Å) because of the more kinked structure of the latter. The extents of staggering between the adjacent chains in the ac projection of the crystal structure were 0.25c and 0.23c for Naph‐2,6‐PBO and Naph‐1,5‐PBO, respectively. Naph‐1,5‐PBO has a more kinked and twisted chain structure relative to Naph‐2,6‐PBO. The kinked and twisted chain structure of Naph‐1,5‐PBO in the crystal seems to prevent slippage between adjacent chains in the crystal structure. The more perfect crystal structure of Naph‐1,5‐PBO may be due to this difficulty in the occurrence of the slippage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1948–1957, 2006 相似文献
10.
11.
New amphiphilic graft copolymers that have a poly(ε‐caprolactone) (PCL) biodegradable hydrophobic backbone and poly(4‐vinylpyridine) (P4VP) or poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PDMAEMA) hydrophilic side chains have been prepared by anionic polymerization of the corresponding 4VP and DMAEMA monomers using a PCL‐based macropolycarbanion as initiator. The water solubility of these amphiphilic copolymers is improved by quaternization, which leads to fully water‐soluble cationic copolymers that give micellar aggregates in deionized water with diameters ranging from 65 to 125 nm. In addition, to improve the hydrophilicity of PCL‐g‐P4VP, grafting of poly(ethylene glycol) (PEG) segments has been carried out to give a water‐soluble double grafted PCL‐g‐(P4VP;PEG) terpolymer.
12.
C. Flesch C. Delaite P. Dumas E. Bourgeat‐Lami E. Duguet 《Journal of polymer science. Part A, Polymer chemistry》2004,42(23):6011-6020
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004 相似文献
13.
Poly(ethylene‐b‐ε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
Yingying Ma Jian Huang Kunyan Sui Guowei Wang 《Journal of polymer science. Part A, Polymer chemistry》2014,52(16):2239-2247
The graft polymer poly(ethylene oxide)‐g‐poly(?‐caprolactone)2 (PEO‐g‐PCL2) with modulated grafting sites was synthesized by the combination of ring‐opening polymerization (ROP) mechanism, efficient Williamson reaction, with thiol–ene addition reaction. First, the precursor of PEO‐Allyl‐PEO with two terminal hydroxyl groups and one middle allyl group was prepared by ROP of EO monomers. Then, the macroinitiator [PEO‐(OH)2‐PEO]s was synthesized by sequential Williamson reaction between terminal hydroxyl groups and thiol–ene addition reaction on pendant allyl groups. Finally, the graft polymer PEO‐g‐PCL2 was obtained by ROP of ?‐CL monomers using [PEO‐(OH)2‐PEO]s as macroinitiator. The target graft polymer and all intermediates were well characterized by the measurements of gel permeation chromatography, 1H NMR, and thermal gravimetric analysis. The crystallization behavior was investigated by the measurements of differential scanning calorimetry, wide‐angle X‐ray diffraction and polarized optical microscope. The results showed that when the PCL content of side chains reached 59.2%, the crystalline structure had been dominated by PCL part and the crystalline structure formed by PEO part can be almost neglected. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2239–2247 相似文献
15.
Cheng Chen Bin Fei Shuwen Peng Hang Wu Yugang Zhuang Xuesi Chen Lisong Dong Zhiliu Feng 《Journal of Polymer Science.Polymer Physics》2002,40(17):1893-1903
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002 相似文献
16.
Anders Höglund Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2008,46(21):7258-7267
The spontaneous reaction of unsaturated double bonds induced by the fragmentation of ether bonds is presented as a method to obtain a crosslinked polymer material. Poly(1,5‐dioxepan‐2‐one) (PDXO) was synthesized using three different polymerization techniques to investigate the influence of the synthesis conditions on the ether bond fragmentation. It was found that thermal fragmentation of the ether bonds in the polymer main chain occurred when the synthesis temperature was 140 °C or higher. The double bonds produced reacted spontaneously to form crosslinks between the polymer chains. The formation of a network structure was confirmed by Fourier transform infrared spectrometry and differential scanning calorimetry. In addition, the low molar mass species released during hydrolysis of the DXO polymers were monitored by ESI‐MS and MALDI‐TOF‐MS. Ether bond fragmentation also occurred during the ionization in the electrospray instrument, but predominantly in the lower mass region. No fragmentation took place during MALDI ionization, but it was possible to detect water‐soluble DXO oligomers with a molar mass up to approximately 5000 g/mol. The results show that ether bond fragmentation can be used to form a network structure of PDXO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7258–7267, 2008 相似文献
17.
Xiaomei Fang Ronald Hutcheon Daniel A. Scola 《Journal of polymer science. Part A, Polymer chemistry》2000,38(8):1379-1390
Microwave irradiation was applied to synthesize poly(ε‐caprolactam‐co‐ε‐caprolactone) directly from the anionic catalyzed ring opening of two cyclic monomers, ε‐caprolactam and ε‐caprolactone using a variable frequency microwave furnace, programmed to a set temperature and controlled by a pulsed power on–off system. Dielectric properties of ε‐caprolactam, ε‐caprolactone, and their mixture were measured in the microwave range from 0.4 to 3 GHz, showing that both ε‐caprolactam and ε‐caprolactone exhibited effective absorption of microwave energy to induce a fast chemical reaction. The microwave induced anionic copolymerization of ε‐caprolactam and ε‐caprolactone generated copoly(amide‐ester)s in yields as high as 70%. Conventional thermal and microwave copolymerization studies were also conducted for comparison with the microwave results. These studies demonstrated that an effective and efficient microwave method to copolymerize ε‐caprolactam with ε‐caprolactone in higher yield, higher amide content, and higher Tg 's, relative to the thermal process, has been developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1379–1390, 2000 相似文献
18.
Si‐Chong Chen Xiu‐Li Wang Ke‐Ke Yang Gang Wu Yu‐Zhong Wang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):3083-3091
Poly(vinyl alcohol)‐graft‐poly(1,4‐dioxan‐2‐one) (PVA‐g‐PPDO) with designed molecular structure was synthesized by a solid‐state polymerization. The solid‐state copolymerization was preceded by a graft copolymerization of PDO initiated with PVA as a multifunctional initiator, and Sn (Oct)2 as a coininitiator/catalyst in a homogeneous molten state. The polymerization temperature was then decreased and the copolymerization was carried out in a solid state. The products prepared by solid‐state polymerization were characterized by 1H NMR and DSC, and were compared with those synthesized in the homogeneous molten state. The degree of polymerization (Dp), degree of substitution (Ds), yield and the average molecular weight of the graft copolymer with different molecular structure were calculated from the 1H NMR spectra. The results show that the crystallization process during the solid‐state polymerization may suppress the undesirable inter‐ or intramolecular side reactions, then resulting in a controlled molecular structure of PVA‐g‐PPDO. The results of DSC measurement show that the molecular structures determine the thermal behavior of the PVA‐g‐PPDO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3083–3091, 2006 相似文献
19.
Anders Sdergrd 《Journal of polymer science. Part A, Polymer chemistry》1998,36(11):1805-1812
Acrylic acid was grafted onto poly(ε-caprolactone) (PCL) films by using electron beam (EB) preirradiation technique. The effect of reaction time, monomer concentration, radiation dose, time between irradiation and grafting, radiation atmosphere, and polymer crystallinity on the extent of grafting were studied. Silver and tin ions were attached to the grafted chains in order to study the grafting process. The irradiation in air was initially more rapid, but the final extent of grafting was the same when irradiated in nitrogen atmosphere. Maximum grafting extents exceeding 400% could be obtained. The optimal grafting was obtained at an acrylic acid to water ratio of 30 : 70. The grafting process could be initiated at a dose as low as 12 kGy. The grafting process proved to start at the surface and was extended into the bulk with time. The ability to form crystals was reduced as the grafting extent increased. The water uptake of the poly(ε-caprolactone)-graft-poly(acrylic acid) was increasing with increasing grafting extent, but reached a maximum of ca 100% for all grafting extents above 85%. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1805–1812, 1998 相似文献
20.
Minoru Nagata Yuki Sato 《Journal of polymer science. Part A, Polymer chemistry》2005,43(11):2426-2439
Photocurable biodegradable multiblock copolymers were synthesized from poly(ε‐caprolactone) (PCL) diol and poly(L ‐lactide) (PLLA) diol with 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender derived from adipoyl chloride and 4‐hydroxycinnamic acid, and they were characterized with Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile tests. The copolymers were irradiated with a 400‐W high‐pressure mercury lamp from 30 min to 3 h to form a network structure in the absence of photoinitiators. The gel concentration increased with time, and a concentration of approximately 90% was obtained in 90–180 min for all the films. The photocuring hardly affected the crystallinity and melting temperature of the PCL segments but reduced the crystallinity of the PLLA segments. The mechanical properties, such as the tensile strength, modulus, and elongation, were significantly affected by the copolymer compositions and gel concentrations. Shape‐memory properties were determined with cyclic thermomechanical experiments. The CAC/PCL and CAC/PCL/PLLA (75/25) films photocured for 30–120 min showed good shape‐memory properties with strain fixity rates and recovery rates of approximately 100%. The formation of the network structure and the crystallization and melting of the PCL segments played very important roles for the typical shape‐memory properties. Finally, the degradation characteristics of these copolymers were investigated in a phosphate buffer solution at 37 °C with proteinase‐k and Pseudomonas cepacia lipase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2426–2439, 2005 相似文献