首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The cationic initiation activity of derivatives of S‐methylsulfonium salts of dibenzothiophene ( 3a ), diphenyl sulfide ( 4a ), thioanisole ( 4d ), and tetrahydrothiophene ( 5 ) was evaluated in the polymerization of glycidyl phenyl ether ( 1 ). These initiators were soluble in 1 and capable of initiating the cationic polymerization of 1 on heating, with the exception of methyltetrahydrothiophenium tetrafluoroborate ( 5 ; in the range of room temperature to 160 °C). Among them, methyldiphenylsulfonium tetrafluoroborate ( 4a ) showed a moderate thermal latency that brought about the polymerization of 1 efficiently at 160 °C but not below 80 °C. S‐Alkylsulfonium salts of aromatic sulfides such as phenoxathiin ( 6a ) and thianthrene ( 6b ) also were evaluated for their activity in the cationic polymerization of 1 , from which the thermal latent behavior of these salts also was confirmed (i.e., there was no reaction at 60 °C for 3 h, but there was a high enough conversion at 140 °C). Furthermore, the catalytic activity of S‐alkylsulfonium derivatives was controllable by both the property of the substituents on the aromatic rings and the character of the alkyl groups on the sulfur atom. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 18–27, 2000  相似文献   

2.
The cationic initiation activity of derivatives of S-methylsulfonium salts has been evaluated in the cationic polymerization of glycidyl phenyl ether ( 1 ). These initiators are soluble in 1 and capable of initiating the cationic polymerization of 1 on heating, except for methyltetrahydrothiophenium tetrafluoroborate ( 6 ) (r.t. −160°C). Among them, methyldiphenylsulfonium tetrafluoroborate ( 4 ) shows moderate thermal latency, that is the polymerization of 1 occurs efficiently at 160°C but not below 80°C.  相似文献   

3.
Benzyl o-, m-, and p-substituted phenyl methyl sulfonium salts ( 2b – 2g ) were synthesized and their activities as cationic initiators were evaluated in the bulk polymerization of phenyl glycidyl ether (PGE). Especially, their activities were estimated with respect to the effect of substituents on the aryl groups. In the polymerizations of PGE with a series of benzyl p-substituted phenyl methyl sulfonium salts, the order of their activities was found to be 2c (CH3OCOO) > 2b (CH3COO) > 2d (CH3O) ~ 2a (HO). In particular, 2c was the most active initiator of all, capable of initiating the polymerization of PGE even at room temperature. In the polymerizations with 2a, 2e (m-Cl), 2f (o-CH3), and 2g (m-CH3), the activity of 2e was the highest of all while those of 2a, 2f , and 2g were almost the same. These results strongly suggested that the electron-withdrawing group placed on the aryl group undoubtedly enhanced the activity of the sulfonium salts as the cationic initiators.  相似文献   

4.
Various p-substituted benzyl p-hydroxyphenyl methyl sulfonium salts ( 2 ) were synthesized and their initiator activities were evaluated in bulk polymerization of glycidyl phenyl ether (PGE). The order of the activity was found to be 2b (X = CH3) > 2a (X = H) ≈ 2c (X = Cl) > 2d (X = NO2), indicating that the introduction of an electron-donating group enhanced the activity. In Hammett's plots, the logarithm of the ratio of the polymerization rates (log kx/kH) was correlated with σ+ρ better than with σp and a negative ρ+ value (-1.18) was obtained. Reaction of 2a with benzyl mercaptan mainly gave dibenzyl sulfide and p-hydroxyphenyl methyl sulfide. The obtained results seemed to demonstrate that the OH group of the aryl group yielded no proton as initiator for the polymerization, whereas the benzyl group caused the polymerization, which was initiated by the corresponding benzyl cation formed by C? S bond cleavage. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The curing behavior of bisphenol‐A‐type epoxide oligomers (Ep) was evaluated by differential scanning calorimetry in the presence of S‐alkylsulfonium salts of dibenzothiophene, phenoxathiin, thianthrene, thioanisole, and tetrahydrothiophene as thermal latent initiators. These initiators dissolved homogeneously in Ep, except for 2,8‐dimethoxy‐5‐methyldibenzothiophenium tetrafluoroborate, and the curing reaction of the resulting mixtures occurred on heating, except for S‐methyltetrahydrothiophenium tetrafluoroborate. The initiation activity of these salts was controlled by the character of the substituents on the benzene ring, the leaving sulfide group, and the S‐alkyl group. Presumably, the electron density on the sulfide moieties and the stability of the carbocation released from the sulfonium salts affected the initiating temperature. A good correlation was obtained between the initiating temperature and the electron density of the sulfur atom of the corresponding sulfides, estimated from ab initio molecular orbital calculations in which the initiating temperature became higher as the electron density of the sulfur atom increased. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 868–871, 2001  相似文献   

6.
Novel aliphatic aminimides were synthesized from the corresponding carboxylic acid esters, 1,1‐dimethylhydrazine, and epoxides in 54–95% yields. Bulk polymerization of glycidyl phenyl ether (GPE) with 3 mol % of the aminimides was evaluated by DSC as a model process for curing of epoxy resin. All the aminimides showed no exothermic DSC peak below 120 °C but showed sharp exothermic peaks above 137 °C, indicating good thermal latency. Good relationships were observed between the calculated bond length from the carbonyl carbon to the α‐carbon of the aliphatic group (R C), DSC onset temperatures, and the thermal dissociation temperatures (Td 's) of the aminimides. The aminimide with a longer R C bond length showed lower Td and DSC onset temperature, that is, higher activity. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3428–3433, 2000  相似文献   

7.
Sulfonium‐containing polymers prepared from dibenzothiophene and diphenyl sulfide were applied as both alkylating agents and latent initiators for the cationic polymerization of glycidyl phenyl ether. The alkylation of acetonitrile proceeded smoothly with poly(Sn‐octyl‐2‐vinyldibenzothiophenium tetrafluoroborate) ( 4 ; 64 mol % octyldibenzothiophenium tetrafluoroborate unit) to give N‐(n‐octyl)acetamide in an excellent yield on the basis of the starting octyldibenzothiophenium tetrafluoroborate unit in 4 . The cationic polymerization of glycidyl phenyl ether was also carried out in the presence of poly(S‐methyl‐2‐vinyldibenzothiophenium tetrafluoroborate) or poly(Sn‐octyl‐4‐vinyldiphenylsulfonium tetrafluoroborate) to confirm their moderate thermal latent activity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3928–3933, 2001  相似文献   

8.
Substituted and unsubstituted benzenesulfonic acid cyclohexyl esters (1–7) were synthesized, and their possibility as latent thermal initiators in the cationic polymerization of isobutyl vinyl ether (IBVE) was examined to develop novel non‐salt type latent cationic initiators. Thermal decomposition of cyclohexyl p‐nitrobenzenesulfonate (2) in C6D6 at 80°C proceeded to exclusively afford cyclohexene as well as p‐nitrobenzenesulfonic acid. Cationic polymerization of IBVE with 1 mol % of an arenesulfonate (1–6) in bulk was carried out at 40–100°C for 12 h. No polymerization took place below 50°C, while the consumption of IBVE depending on both the polymerization temperature and the structure of the arenesulfonates was observed above 60°C. The obtained polyIBVEs showed bimodal GPC curves in several cases, revealing the intervention of two independent propagation species in the polymerization. The cationic polymerization of IBVE with cyclohexyl 2,4,6‐triisopropylbenzenesulfonate (7) at 80°C confirmed the acceleration effect of bulkiness on the polymerization rate. It was concluded that the polymerization was largely dependent on both electronic and steric factors of the aryl groups of the initiators which were directly related to the stability of the sulfonate anions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 293–301, 1999  相似文献   

9.
10.
The effect of the novel N‐crotyl‐N,N‐dimethyl‐4‐methylanilinium hexafluroantimonate (CMH) initiator on cure kinetics and rheological properties of diglycidylether of bisphenol A (DGEBA) epoxy cationic system was investigated. From DSC measurements of the DGEBA/CMH system, it was found that this system exhibited excellent thermal latent characteristics at a given temperature and revealed complex cure behavior as indicated by multiple exotherms. The conversion and conversion rate of the DGEBA/CMH system increased with increasing the concentration of initiator, attributed to the high activity of CMH. Viscoelastic properties during gel formation of DGEBA initiated by CMH were investigated by rheological techniques under isothermal conditions. The gel time obtained from the modulus crossover point t(G′) = G″ was affected by a high curing temperature and the concentration of CMH, resulting in a high degree of network formation in cationic polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2397–2406, 2001  相似文献   

11.
12.
A novel phosphate monomer, Op‐(methacryloyloxymethyl)benzyl O,O‐diethyl phosphate (MDP) was synthesized by the reaction of diethyl phosphorochloridate with 1,4‐benzenedimethanol, followed by the reaction with methacryloyl chloride in the presence of triethylamine. The radical polymerization of MDP and copolymerization with methyl methacrylate were carried out in the presence of 2,2′‐azobisisobutyronitrile (3 mol %) in dimethylacetamide at 60 °C for 20 h to afford phosphate‐pendant polymers. The polymerization of glycidyl phenyl ether (GPE) was carried out with the phosphate‐pendant polymer as an initiator in the presence of ZnCl2. The polymerization did not proceed below 90 °C but rapidly proceeded above 90 °C to afford polyGPE. The phosphate‐pendant polymer served as a good thermally latent polymeric initiator. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3365–3370, 2001  相似文献   

13.
The reaction of glycidyl phenyl ether (GPE) with 1‐aminoalkanes‐intercalated α‐zirconium phosphate (α‐ZrP·1‐aminoalkane): 1‐aminoalkanes 1‐aminopropane (α‐ZrP·Pr), 1‐aminobutane (α‐ZrP·Bu), 1‐aminooctane (α‐ZrP·Oct), and 1‐aminohexadecane (α‐ZrP·Hed) was carried out at varying temperatures for 1 h periods. Reaction progress was not observed until the reactants were heated to 80 °C or above. On increasing the temperature, the conversion factors increased such that, at 140 °C, conversions of 62% (α‐ZrP·Pr), 60% (α‐ZrP·Bu), 67% (α‐ZrP·Oct), and 64% (α‐ZrP·Hed) were obtained. The thermal stabilities as latent initiators were tested: GPEs reacted with α‐ZrP·Pr, α‐ZrP·Bu, and α‐ZrP·Oct at 40 °C for 360 h achieved conversions of 83, 55, and 59%, respectively. In contrast, the reaction in the presence of α‐ZrP·Hed did not proceed at 40 °C. The order of the thermal stability of GPE in the presence of α‐ZrP·1‐aminoalkane intercalation compounds was: α‐ZrP·Hed > α‐ZrP·Bu ≈ α‐ZrP·Oct > α‐ZrP·Pr. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1854–1861  相似文献   

14.
Oxoaminium salt ( 1 ), derived from 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, 2 ) by one-electron oxidation, could be an initiator for cationic polymerization of vinyl monomers such as isobutyl vinyl ether (IBVE), 2,3-dihydrofuran, p-methoxystyrene, N-vinyl pyrrolidone, etc., to give the corresponding polymers, when 1 had a low nucleophilic counter anion. Formation of the adducts of 1 and IBVE as well as 1H-NMR and IR data suggested the formation of polymers containing N? O? C structure as the polymer head group. In the polymerization of IBVE, the effects of solvent and concentration of 1 were little observed, however the polymerization rate was dependent on temperature. Furthermore, the thermal reaction of the polymers obtained, which were regarded as prepolymers for block copolymerization and polymeric initiators for radical polymerization, was studied. For example, poly(2-benzylidene-1,3-dioxane) obtained by the polymerization of 2-benzylidene-1,3-dioxane with oxoaminium hexafluoroantimonate ( 1, X = SbF6) was employed as an initiator for radical polymerization of MMA to give its block copolymer with PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Novel phosphates, Op‐(hydroxymethyl)benzyl O,O‐diethyl phosphate ( 1 ) and O‐(2‐bromoisobutyryloxymethyl)benzyl O,O‐diethyl phosphate ( 2 ) were synthesized by the reaction of diethyl phosphorochloridate with 1,4‐benzenedimethanol and the successive reaction with 2‐bromoisobutyryl bromide in the presence of triethylamine and submitted to the polymerization of ?‐caprolactone and methyl methacrylate as the initiators. They afforded phosphate end‐functional poly(?‐caprolactone) and poly(methyl methacrylate) with controlled molecular weights and polydispersity ratios by living ring‐opening polymerization and samarium‐induced polymerization. The polymerization of glycidyl phenyl ether (GPE) was carried out with the phosphate end‐functional polymers as the latent polymeric initiators in the presence of ZnCl2. The polymerization of GPE did not proceed below 90 °C, but it rapidly proceeded to afford poly(GPE) above the temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3832–3840, 2001  相似文献   

16.
The respective hydroxypropyl phenyl ethers were obtained by the reaction of 5,5-dimethylhydantoin, morpholine, benzotriazole, benzimidazole, pyrrolidone, and phthalimide with phenyl glycidyl ether. 8-(2-Hydroxy-3-phenoxy) quinoline was synthesized by O-alkylation. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 817–820, June, 2008.  相似文献   

17.
A rapid cationic polymerization of cyclohexene oxide that completed within a few minutes was achieved by a new initiation system that involves (1) a copper‐catalyzed reduction of benzoyl peroxide by an ascorbic acid derivative that generates free radicals and (2) capture of the radicals by allyl sulfonium salt having hexafluoroantimonate (SbF) as a counter anion, followed by fragmentation of sulfonium radical cation, from which a super acid HSbF6 was produced to initiate the rapid polymerization. The key factor in designing an efficient allyl sulfonium salt was attachment of an electron withdrawing ester group at the allyl group, of which ability to stabilize the formed radical can enhance the efficiency in trapping radicals by the allylic salt. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4178–4183, 2010  相似文献   

18.
The linear ether bond was exclusively cleaved in benzyl glycidyl ether and triphenylmethyl glycidyl ether under the influence of K, K+(15-crown-5)2 (1), whereas the strongly strained three-membered oxacyclic ring remained undisturbed. Potassium glycidoxide and benzylpotassium were found as the primary reaction products of benzyl glycidyl ether with 1. Subsequently, benzylpotassium reacted with benzyl glycidyl ether giving the next potassium glycidoxide molecule and bibenzyl. Benzyl phenyl ether was used as a model compound to explain the mechanism of bibenzyl formation. The reaction of triphenylmethyl glycidyl ether with 1 resulted in potassium glycidoxide and stable triphenylmethylpotassium. After treating with a quenching agent a new glycidyl ether or glycidyl ester was obtained from potassium glycidoxide. These results were found when the reaction occurred at the excess of glycidyl ether. In another case, i.e. at the excess of 1 further reactions took place with the participation of potassium anions and various new compounds were observed in the reaction mixture after benzylation or methylation. Thus, the method of substrates delivery influences the course of studied processes in a decisive way.  相似文献   

19.
Copolymers of allyl glycidyl ether (AGE) with acrylonitrile (AN) have been prepared by bulk polymerization of their monomers with gamma rays. Copolymers thus obtained were characterized by Fourier transform infrared (FTIR), and ultraviolet (UV) spectroscopic techniques. The composition of the copolymers is determined indirectly by FTIR, UV, and directly by elemental analysis. The results obtained by different methods are compared. The reactivity ratios of monomer pairs (AGE + AN) which copolymerized heterogeneously were calculated by using different methods of determination. Among the three experimental methods used for the analysis of compositions and two theoretical methods of computations, the elemental analysis technique and the application of nonlinear least-squares method gave the most reliable reactivity ratios. These are found to be 1.86 and 0.21 for acrylonitrile and allyl glycidyl ether, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Vinylether was used as a cationically polymerizable moiety and incorporated into sidechain of polymers as copolymers of vinyloxyethyl methacrylate (VEM) and styrene (St). Photoirradiation of the copolymers containing a small amount of benzyl(4-hydroxyphenyl) methylsulfonium salt (BSS) resulted in a high crosslinking density as evidenced by a low degree of swelling, which is ascribed to the high reactivity of the vinyloxy moieties. The sensitivity of this photoreaction is significantly high because of a large kinetic chain length of the cationic polymerization of vinylethers, while copolymers of glycidyl methacrylate and St showed crosslinking to much less extent when irradiated under the same condition. The ability of other sulfonium salts, (4-hydroxyphenyl) methyl(4-nitrobenzyl) sulfonium salt and (4-hydroxyphenyl) methyl(1-naphthylmethyl)sulfonium salt, to induce photocrosslinking was also examined. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号