首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photo-crosslinkable thermotropic liquid crystalline block copolyetheresters with photoreactive hard segment of poly(hexamethylene p-phenylenediacrylate) and soft segment of poly(tetramethylene ether) were synthesized by melt polycondensation from n-butyl-p-phenylenediacrylate, hexamethylene glycol, and poly(tetramethylene ether) glycol (PTMG, Mn = 1000–3000). The influence of molecular weight and composition of PTMG unit on the thermal behavior was determined by differential scanning calorimetry and polarized optical microscopy. All synthesized block copolymers show thermotropic liquid crystalline phase and can photo-crosslink by UV irradiation. Photoreaction of the copolymer thin film was carried out using Hg-UV light and investigated by FT–IR spectroscopy and a dynamic viscoelastic analyzer. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1849–1855, 1997  相似文献   

2.
A series of poly[oxy(4‐n‐alkyl‐3,5‐benzoate)oxy‐1,4‐phenylenediacryloyl]s (PPDA‐CnBZ polymers) with high molecular weights was synthesized. These polymers exhibit excellent solubility in some common organic solvents and produce good quality films using conventional spin‐casting and drying processes. The polymers are thermally stable up to 357–362 °C in a nitrogen atmosphere; their glass transition temperatures are greater than 121 °C. The photoreactions and photoalignments of the polymers were investigated using ultraviolet‐visible and infrared spectroscopy, and their liquid crystal (LC) alignment properties were examined. The phenylenediacrylate (PDA) chromophores in the polyesters were found to mainly undergo photocyclization upon ultraviolet light irradiation. Irradiation of the polyester films with linearly polarized ultraviolet light (LPUVL) induces preferential orientation of the polymer main chains, while the unreacted PDA chromophores are aligned along the direction perpendicular to the electric vector of the LPUVL. All the films irradiated with LPUVL were found to align LCs in a direction perpendicular to the electric vector of the LPUVL. Moreover, these LC alignments persisted even on irradiated films annealed at temperatures up to 210 °C, which is much higher than the glass transition temperatures of the polyesters. These LC alignment characteristics are due to the anisotropic interactions of the LC molecules with the oriented polymer chains and with the unreacted PDA chromophores. LC alignments on the polyester film surfaces have homeotropic to homogeneous characteristics, depending on the length of the n‐alkyl side group, providing strong evidence that the n‐alkyl side groups of the polyesters play a critical role in determining the pretilt angles of the LCs. The LC pretilt angles were also found to be influenced by the thermal annealing history of the irradiated films. In summary, the excellent properties of the PPDA‐CnBZ polymers make them promising candidate materials for use as LC alignment layers in advanced LC display devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1322–1334, 2004  相似文献   

3.
A novel photosensitive polyimide, poly(4,4'-stilbenylene 4,4'-oxidiphthalimide) (ODPA-Stilbene PSPI) was newly synthesized. The most surprising feature of this PSPI is that the PSPI films irradiated with linear polarized ultraviolet light (LPUVL) can favorably induce a unidirectional alignment of liquid crystals (LCs) in contact with the film surface and further switch the director of the unidirectionally aligned LCs from a perpendicular direction to a parallel direction with respect to the polarization direction of LPUVL by simply controlling the exposure dose in the irradiation process. These LPUVL-irradiated films were found to provide high anchoring energy to LCs, always giving very stable, homogeneous cells with unidirectionally aligned LCs regardless of the LC alignment directions. In the films, the PSPI polymer chains were found to undergo favorably unidirectional orientation via a specific orientation sequence of the polymer chain segments led by the directionally selective trans-cis photoisomerization of the stilbene chromophore units in the backbone induced by LPUVL exposure. Such unidirectionally oriented polymer chains of the films induce alignment of the LCs along the orientation direction of the polymer chains via favorable anisotropic molecular interactions between the oriented polymer chain segments and the LC molecules. In addition, the PSPI has an excellent film formation processibility; good quality PSPI thin films with a smooth surface are easily produced by simple spin-coating of the soluble poly(amic acid) precursor and subsequent thermal imidization process. In summary, this new PSPI is the promising LC alignment layer candidate with rubbing-free processing for the production of advanced LC display devices, including LC display televisions with large display areas.  相似文献   

4.
Linearly polarized (LP) UV photoreaction of a photo-crosslinkable side-chain liquid-crystalline polymer (SLCP) containing photoreactive cinnamoyl and biphenyl mesogenic groups ( 1 ) was studied. The optical anisotropy of the polymer film was induced by the LP-UV photoreaction and was investigated by the temperature-controlled polarized UV absorption spectroscopy and polarized FT-IR measurements. The reorientation of the nonreacted mesogenic groups along to the Ê direction of the incident LP-UV light during the photoreaction occurred at the LC temperature range of the polymer, and the induced birefringence Δn was about 0.02. Because of the high-density photo-crosslinking, the LP-UV photoreacted film showed orientational stability up to 160°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1521–1526, 1998  相似文献   

5.
The alignment and optical properties of ferroelectric liquid crystal cells, having alignment films of a chalcone-based side chain polymer treated by linearly polarized UV irradiation were investigated. The long absorption band of the UV/Vis spectra gradually decreased and the FTIR spectra shifted as the irradiation times increased, indicating that cyclo-addition and isomerization reactions of the chalcone-based side chains occurred. UV dichroism demonstrated anisotropic changes in the alignment films, with a maximum at low exposure energy (0.5 J cm-2). Liquid crystal molecules were aligned perpendicular to the polarization direction of the linearly polarized UV radiation. The azimuthal anchoring energy of liquid crystal E7 on a chalcone-based side chain polymer surface increased with exposure energy. Well aligned defect-free cells and high contrast ratio were achieved with irradiation of longer than 5 min; the geometric conditions for a stable C2 structure may be satisfied at low temperature with slowly cooling.  相似文献   

6.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

7.
An aromatic polyimide bearing photoreactive 4‐(2‐(4‐oxyethylenyloxyphenyl)vinyl)pyridine side groups was synthesized and characterized. The polymer is stable up to 300°C and soluble in organic solvents, giving thin films in good quality. When exposed to UV light, it reorients favorably with an angle of 98° with respect to the electric vector of linearly polarized UV light. UV‐exposed films align liquid‐crystals (LCs) homogeneously along the preferential orientation of the polymer chains on the surface. The pretilt angle of the LCs is 0.32–0.92°, depending on the exposure dose and annealing. LC alignment is retained up to 210°C. Based on the optical retardation behavior and spectroscopic measurements, a photoalignment mechanism is proposed.  相似文献   

8.
We prepared blend alignment layers from polymethacrylate with coumarin side chains (PMA-g-coumarin) and polyimides for the orientation of liquid crystals (LCs) using linearly polarized ultraviolet (UV) irradiation. We used two different polyimides, namely 4,4′-(hexafluoro-isopropylidene) diphthalic anhydride-3,5-diamino-benzoic acid (6FDA-DBA) and pyromellitic dianhydride-4,4′-oxydianiline (PMDA-ODA). It was found that the molecular orientation of the LC depended on the type of polyimide in the blend alignment layer. The thermal stability of the LC orientation was enhanced regardless of the type of polyimide, while the direction of LC orientation was different for each type of polyimide. The photoreactivity of the polyimide was a very important factor in determining the molecular orientation of the LC on the blend alignment layer. This may be attributed to the different mechanisms of LC orientation on PMA-g-coumarin and polyimide induced by the polarized UV irradiation. The direction of the LC orientation could be changed by controlling the photoreaction of the polyimides using the appropriate UV filter for the polarized UV irradiation.  相似文献   

9.
Three types of bi‐functionalized copolymers ( P1FAz , P2FAz , and P3FAz ) with different numbers of fluorene units and an azobenzene unit were synthesized and characterized using UV–vis and polarized absorption spectroanalysis. The trans‐cis photoisomerization was conformed under 400 nm light irradiation for all copolymers in chloroform. However, in the film state, only the transcis photoisomerization occurred by mono‐fluorene attached copolymer poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐4,4′‐azobenzene)] ( P1FAz ). Photo‐induced alignment was achieved using the P1FAz film after irradiation with linear polarized 400 nm light and subsequent annealing at 60 °C. Surface orientation of a spin‐coating film of poly(9,9‐didodecylfluorene) ( F12 ) was achieved using the photo‐induced alignment layer of the P1FAz film after annealing at 90 °C. The photo‐induced alignment layer of P1FAz has potential application to the surface orientation technique for appropriate polymers, which will be useful for the fabrication of optoelectronics devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The block copolyetheresters with a hard segment of poly (hexamethylene p,p′-bibenzoate) and a soft segment of poly (ethylene oxide) were prepared by melt polycondensation of dimethyl-p,p′-bibenzoate, 1,6-hexanediol, and polyethylene glycol (PEG) with molecular weights of 400, 1000, 2000, or 4000. These block copolyetheresters were characterized by intrinsic viscosity, GPC, FT-IR, 1H-NMR, and water absorption. The thermotropic liquid crystalline properties were investigated by DSC, polarized microscope, and x-ray diffraction. The block copolyetheresters exhibit smectic liquid crystallinity due to the polyester segment. The transitions are dependent on the molar content and the molecular weight of PEG used. The block copolyetheresters show high water absorption due to the hydrophilic nature of the poly (ethylene oxide) segment. The water absorption increases with increasing PEG content. As the molecular weight of PEG increases, the water absorption increases significantly. The results indicate that the water absorption of the poly (ethylene oxide) segment in the block copolymers is affected by the presence of polyester segments. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
A series of optically active methacrylic homopolymers, poly[(4‐{4′‐[(S)‐2‐methyl‐1‐butyloxycarbonyl]phenylazo}phenoxyl)x‐methylene methacrylate] (x = 0, 2, 6, or 11), were synthesized. The structures of the polymers were characterized by IR, 1H NMR, UV, differential scanning calorimetry, and gel permeation chromatography. The chiroptical properties of the polymers in films were investigated with circular dichroism (CD) measurements. The CD and UV spectra of the films suggested that CD absorptions occurred in the films of the polymers with long spacers (x = 6 or 11) but not in the films of the polymers with short spacers (x = 0 or 2). After irradiation with linearly polarized light at 442 nm, the CD values were amplified in all the polymeric films. The amplificatory values of the CD bands in the absorption region (260–360 nm) of azobenzene chromophores suggested that the spacer length had an effect on both the transfer of chirality and photoinduced chirality in the polymeric films. The largest level of photoinduced chirality was induced in the polymer containing six methylene units. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3210–3219, 2006  相似文献   

12.
Thin films of poly(vinylcinnamate) and poly(7-methacryloyloxycoumarin) have been exposed to linearly polarized UV light. The resulting anisotropic films have been characterized by using UV, conventional and polarization modulation FTIR spectroscopies. In particular, several internal vibrational modes have been used as structural probes to examine the orientation of groups in the irradiated polymers. These experiments provide new information about the photoinduced anisotropy in these photocrosslinkable polymers upon irradiation with linearly polarized UV light, and an orientation mechanism is proposed. This mechanism is confirmed by studying the liquid crystal alignment induced by PVCi and poly(7-methacryloyloxycoumarin). Finally, the stability of the photoalignment process is discussed.  相似文献   

13.
《Liquid crystals》2000,27(3):329-340
Thin films of poly(vinylcinnamate) and poly(7-methacryloyloxycoumarin) have been exposed to linearly polarized UV light. The resulting anisotropic films have been characterized by using UV, conventional and polarization modulation FTIR spectroscopies. In particular, several internal vibrational modes have been used as structural probes to examine the orientation of groups in the irradiated polymers. These experiments provide new information about the photoinduced anisotropy in these photocrosslinkable polymers upon irradiation with linearly polarized UV light, and an orientation mechanism is proposed. This mechanism is confirmed by studying the liquid crystal alignment induced by PVCi and poly(7-methacryloyloxycoumarin). Finally, the stability of the photoalignment process is discussed.  相似文献   

14.
We prepared blend alignment layers from polymethacrylate with coumarin side chains (PMA-g-coumarin) and polyimides for the orientation of liquid crystals (LCs) using linearly polarized ultraviolet (UV) irradiation. We used two different polyimides, namely 4,4'-(hexafluoro-isopropylidene) diphthalic anhydride-3,5-diamino-benzoic acid (6FDA-DBA) and pyromellitic dianhydride-4,4'-oxydianiline (PMDA-ODA). It was found that the molecular orientation of the LC depended on the type of polyimide in the blend alignment layer. The thermal stability of the LC orientation was enhanced regardless of the type of polyimide, while the direction of LC orientation was different for each type of polyimide. The photoreactivity of the polyimide was a very important factor in determining the molecular orientation of the LC on the blend alignment layer. This may be attributed to the different mechanisms of LC orientation on PMA-g-coumarin and polyimide induced by the polarized UV irradiation. The direction of the LC orientation could be changed by controlling the photoreaction of the polyimides using the appropriate UV filter for the polarized UV irradiation.  相似文献   

15.
This work reports on the synthesis of three acid oligosiloxane‐urethane dimethacrylates and their use to obtain hybrid nanocomposite films, in which the presynthesized silver nanoparticles (NPs) were incorporated before photopolymerization, or produced via in situ photoreduction of the silver nitrate (AgNO3) precursor into the formulation, without any conventional reducing agent. All samples were characterized by 1H NMR, FT‐infrared and UV spectroscopies, photodifferential scanning calorimetry (photo‐DSC), transmission electron microscopy (TEM), and energy‐dispersive X‐ray (EDX) analysis. Fourier transformed infrared spectroscopy and photo‐DSC results showed that dimethacrylates having hydrophilic segment of poly(ethylene oxide) type in structure are more reactive than the acid oligosiloxane dimethacrylate. When another urethane dimethacrylate is taken as a comonomer, the photopolymerization rate (0.112–0.132 s?1) and the degree of conversion (82–93%) significantly increased. Experimental evidence of the existence of nanosilver into the polymer matrix generated upon UV irradiation has been supported by UV spectroscopy, EDX and TEM analysis, the last allowing a visualization of the formation of silver NPs with size between 2 and 15 nm. Mechanical parameters and wettability of the photocrosslinked films are also discussed in the prospect of further potential applications in the biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Visible light irradiation of thin films of a main‐chain liquid crystalline poly(aryl cinnamate) using ketocoumarins as triplet sensitizers leads to photochemical crosslinking and UV‐vis and FTIR spectroscopic changes associated with saturation of the cinnamate double bond, most likely by 2 + 2 photocycloaddition. The triplet sensitizers are themselves photolabile and are lost by photochemical reactions during the sensitization process. A new ketocoumarin sensitizer with decyloxy substituents and a reduced tendency to phase separate from the polymer is reported. A simple calculation of the sensitization stoichiometry shows that a single molecule of this ketocoumarin sensitizes the destruction of approximately 90 cinnamate chromophores in the “as cast” films below Tg and about 300 chromophores in the more‐ordered glassy nematic films and in “as cast” films of poly(vinyl cinnamate). Triplet sensitization of fluid nematic films leads, upon initial irradiation, to UV‐vis hyperchromism that is attributed to disruption of chromophore aggregation and, possibly, to disruption of the nematic mesophase as photoproducts begin to form. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 134–144, 2001  相似文献   

17.
Photoalignment layers comprising Polymer 1 were prepared using linearly polarized UV‐irradiation for chloroform‐vapor annealing of π‐conjugated oligomer films, both processes conducted at room temperature. The resultant uniaxially oriented monodomain films exhibited S = 0.74 (at Pr = 0.90) and 0.82 (at Pr = 0.95) in OF and OF2T films, respectively, apparently limited by film dewetting in comparison to S = 0.82 ± 0.01 from thermal annealing on rubbed polyimide alignment and Polymer 1 photoalignment layers. The time to arrive at maximum S values varied from 5–10 s to 6–8 min on rubbed polyimide alignment layers and Polymer 1 photoalignment layer, respectively, because of favorable π–π interactions enhanced by rubbing. In contrast, PF2T could not be oriented on either type of alignment layers after annealing under saturated chloroform vapor up to 14 h. Annealing of an OF2T film under saturated chlorobenzene vapor at room temperature permitted lyotropic nematic mesomorphism to be observed in situ, which is equivalent to thermotropic nematic mesomorphism as the driving force behind thermal annealing. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
Ionic liquids have attracted a considerable attention as the next generation electrolytes for energy devices. We have developed new free-standing and nanostructured polymer films in which ionic liquids are confined into one-dimensionally ordered nanochannels. These polymer films have been obtained by photopolymerization of hydrogen-bonded supramolecular columnar liquid-crystalline self-assemblies of an imidazolium-based ionic liquid and a wedge-shaped diol compound containing polymerizable groups. The macroscopically parallel alignment of the columnar structures on a glass substrate has been achieved by the application of mechanical shearing, and subsequently fixed into polymer films by UV irradiation. This ionic liquid-containing polymer film exhibits higher ionic conductivity than that of the previously reported one-dimensional polymer film obtained by in situ photopolymerization of a covalent-type columnar liquid-crystalline imidazolium salt. The noncovalent supramolecular approach to one-dimensionally ion-conductive polymer films has led to improvement on conductive properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 366–371  相似文献   

19.
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005  相似文献   

20.
In this paper, the polyanion-containing cinnamoyl group (PACSS-CF3) was self-assembled with diazoresin (DR) to form a kind of stable covalent ultrathin film by irradiation with 365?nm UV light. The photoalignment properties of the DR/PACSS-CF3 covalent film were investigated. The covalent film was found to have anisotropy after irradiation by 297?nm linearly polarised ultraviolet light (LPUVL), and could induce uniform alignment of liquid crystals (LCs). The pretilt angle of the LC was 2.5°. The stability of the film was enhanced by the covalent bonds. The films were thermally stable to 180°C. Polarised UV-Vis spectroscopy was utilised to investigate the photochemical process of the covalent film. It was found that cinnamoyl moieties parallel to the polarisation direction of the LPUVL were consumed by the photoreaction faster than those perpendicular to the polarisation direction. It can be concluded that the selective photoreaction induced the anisotropy of the films. The anisotropic films induced the homogeneous alignment of LC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号