首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five novel monoazo disperse dyestuffs based on N‐ester‐1,8‐naphthalimide were synthesized. Acenaphthene was nitrated, then oxidized to 4‐nitro‐1,8‐naphthalic anhydride. 4‐Nitro‐1,8‐naphthalic anhydride was reacted with methyl and ethyl glycinate in alcoholic media, followed with reduction. 4‐Amino‐N‐methyl and ethyl glycinate‐1,8‐naphthalimide were obtained. These products were diazotized and coupled with appropriate aromatic amines to give bluish‐red or violet dyestuffs. All intermediates and dyestuffs were purified and characterized by 1H‐NMR, FTIR, DSC, UV‐VIS and Elemental Analysis. Dispersion of dyestuffs was prepared in water and applied to polyester fabrics. The dyed fabrics showed that four of the synthesized dyestuffs were suitable for coloring polyester fibers, producing deep bluish red with very good build up properties.  相似文献   

2.
《合成通讯》2013,43(12):2269-2275
Abstract

Mild and efficient procedures have been developed for synthesis of 1,8‐naphthalide and 1,8‐naphthalenedimethanol. In an ice‐water bath, 1,8‐naphthalide was prepared from 1,8‐naphthlic anhydride using LiAlH4 as reducing agent. 1,8‐Naphthalenedimethanol was obtained with good yield from reduction of 1,8‐naphthalic anhydride by LiAlH4 and Lewis acids at room temperature. The effects of various factors on the reduction of 1,8‐naphthalic anhydride with LiAlH4 were investigated.  相似文献   

3.
A series of bis(4‐thio‐1,8‐naphthalic anhydride)s and the corresponding bis(N‐amino naphthalimide) derivatives were synthesized from readily available compounds in high yield. A series of novel poly(thioether‐naphthalimide)s, which utilized hydrazine as the diamine, were synthesized by a one‐step polymerization reaction in m‐cresol. Poly(thioether‐naphthalimide)s with inherent viscosities of 0.57–1.73 dL/g were obtained. The polymers were soluble in CHCl3 and were determined to have high molecular weights by means of gel permeation chromatographic analysis. They were soluble in m‐cresol and could be cast into tough films from m‐cresol solution. The glass‐transition temperature (Tg) values of the polyimides ranged from 320 to 353 °C. Polyimides from the bisphenol dianhydride, derived from 9,9‐bis(4‐hydroxyphenyl)fluorene, did not show a clear transition in the DSC analysis. Degradation temperatures for 5% weight loss all occurred above 430 °C in nitrogen. The series of monomers were successfully copolymerized with each other. Monomers 6a and 7a , containing the bisphenol A moiety, could also be copolymerized with perylenetetracarboxylic dianhydride. These copolymers had high Tg's and were thermally stable. The UV–vis absorption properties of the polymers were also examined. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1040–1050, 2001  相似文献   

4.
A diiron dithiolate complex 1 containing 1,8‐naphthalic anhydride bridge was prepared, which possessed the lowest reduction potential for the synthetic diiron complexes modeled on the active site of [FeFe] hydrogenase reported so far. For the first time, oxidative quenching of the excited Ru(bpy)32+* through electron transfer to a bio‐inspired [2Fe2S] complex was corroborated. Hydrogen evolution, driven by visible light, was successfully observed for a three‐component system, consisting of Ru(bpy)32+, complex 1 , and EDTA as electron donor in aqueous/organic media. These results provide a basis and also opportunity to develop a photo water splitting system employing Fe‐based catalysts without sacrificial electron donors.  相似文献   

5.
Two new trans‐disubstituted cyclam ligands; 1,8‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11‐tetra‐azacyclotetradecane ( 5 ) and 1,8‐dimethyl‐4, 11‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11 ‐tetraaza‐cyclotetradecane ( 6 ); have been synthesized and characterized. The crystal structures of ligand 6 and its Ni(II) and Co(II) complexes have been determined. Crystal data are given for 6 , space group, P21/c, a = 11.095 (6) Å, b = 9.467 (5) Å, c = 13.283 (8) Å; β = 106.95 (5)°, Z = 2, R = 0.0715; for [Ni 6 ](C104)2, space group P21/c, a = 9.4848 (14) Å, b = 33.941(6) Å, c = 9.793(2) A, β = 95.264(14)°, Z = 4, R = 0.0567; for [Co 6 ](C104)2, space group, P21/c, a = 9.440 (6) Å, b = 33.848 (13) Å, c = 9.820 (3) Å, β = 95.16(3)°, Z = 4, R = 0.0718. In both complexes, the metal atoms are six‐coordinate with only one of the pendants interacting with the central metal atom and the other pendant remaining uncoordinated.  相似文献   

6.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

7.
A continuous, scalable, and solvent‐free method for the synthesis of various naphthalic imides and perylene diimides (PDIs) using twin‐screw extrusion (TSE) is reported. Using TSE, naphthalic imides were obtained quantitatively without the need for excess amine reactant or product purification. With good functional‐group tolerance, alkyl and benzyl amine derived PDIs (incl. commercial dyes) were obtained in 50–99 % yield. Use of K2CO3, enabled synthesis of more difficult aniline‐derived PDIs. Furthermore, an automated continuous TSE process for Pigments Black 31 and 32 is demonstrated, with a throughput rate of about 1500 g day?1, corresponding to a space time yield of about 30×103 kg m?3 day?1, which is 1–2 orders of magnitude greater than for solvent‐based batch methods. These methods provide substantial waste reductions and improved efficiency compared to conventional solvent‐based methods.  相似文献   

8.
严宏宾  蔡良珍 《合成化学》1998,6(3):319-323
研究了1,8-萘酐和1,8-萘酰亚胺萘环上硝基和卤素原子的亲核取代反应,讨论了影响亲核取代反应的因素,根据2,4-二硝基苯酚与脂胺肪的亲核取代机理,提出了4-硝基-1,8-萘酐及4-硝基-1,8-萘酰亚胺与脂肪胺发生亲核取代反应可能的反应机理。  相似文献   

9.
Efficient violet–blue‐emitting molecules are especially useful for applications in full‐color displays, solid‐state lighting, as well as in two‐photon absorption (TPA) excited frequency‐upconverted violet–blue lasing. However, the reported violet–blue‐emitting molecules generally possess small TPA cross sections. In this work, new 1,8‐diazapyrenes derivatives 3 with blue two‐photon‐excited fluorescence emission were concisely synthesized by the coupling reaction of readily available 1,4‐naphthoquinone O,O‐diacetyl dioxime ( 1 ) with internal alkynes 2 under the [{RhCl2Cp*}2]–Cu(OAc)2 (Cp*=pentamethylcyclopentadienyl ligand) bimetallic catalytic system. Elongation of the π‐conjugated length of 1,8‐diazapyrenes 3 led to the increase of TPA cross sections without the expense of a redshift of the emission wavelength, probably due to the rigid planar structure of chromophores. It is especially noteworthy that 2,3,6,7‐tetra(4‐bromophenyl)‐1,8‐diazapyrene ( 3c ) has a larger TPA cross section than those of other molecules reported so far. These experimental results are explained in terms of the effects of extension of the π‐conjugated system, intramolecular charge transfer, and reduced detuning energy.  相似文献   

10.
A general method for preparation of ferrocene‐containing monoamines (5–7) and diamines (10, 11) starting from the corresponding quaternary ammonium iodide 3 and ferrocene mono‐ (4) and dithiaaliphatic acids (8, 9) was developed. Amines obtained have been characterized as acet‐ and benzamides (12–15). The oligoamide precursors (16, 17, 22, 23) were synthesized by reactions of succinic or glutaric anhydride with amines (6, 7, 10, 11). Their conversion into oligoamide analogs (20, 21, 25) failed. The desired diamides (20, 21) were prepared by condensation of amines (6, 7) with alkanedioyl chlorides, (CH2)n(COCl)2 (n = 0, 1, 2, 3). Reactions of diamine 10 with succinic or glutaric anhydride gave amino acids 28—formal monomers for the planned oligomerization. Oligomers 29 were synthesized by condensation of equimolar amounts of diamines 10 and the above mentioned alkanedioyl chlorides in dichloromethane at 0°C. The structure of oligomers 29 was indicated from their IR and 1H‐NMR spectra in comparison with the model substances 12–28. The degree of polymerization of compounds 29 was determined by 1H‐NMR end‐group analysis (DPn = 4–6). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 25–36, 1999  相似文献   

11.
A novel aromatic diamine monomer bearing tertbutyl and 4‐tertbutylphenyl groups, 3,3′‐ditertbutyl‐4,4′‐diaminodiphenyl‐4′′‐tertbutylphenylmethane (TADBP), was prepared and characterized. A series of non‐coplanar polyimides (PIs) were synthesized via a conventional one‐step polycondensation from TADBP and various aromatic dianhydrides including pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (OPDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and 4,4′‐(hexafluoroisopropylidene)dipthalic anhydride (6FDA). All PIs exhibit excellent solubility in common organic solvents such as N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), dimethyl sulfoxide (DMSO), chloroform (CHCl3), tetrahydrofuran (THF), and so on. Furthermore, the obtained transparent, strong and flexible polyimide films present good thermal stability and outstanding optical properties. Their glass transition temperatures (Tgs) are in the range of 298 to 347°C, and 10% weight loss temperatures are in excess of 490°C with more than 53% char yield at 800°C in nitrogen. All the polyimides can be cast into transparent and flexible films with tensile strength of 80.5–101 MPa, elongation at break of 8.4%–10.5%, and Young's modulus of 2.3–2.8 GPa. Meanwhile, the PIs show the cutoff wavelengths of 302–356 nm, as well as low moisture absorption (0.30% –0.55%) and low dielectric constant (2.78–3.12 at 1 MHz).  相似文献   

12.
陈梓云  彭梦侠 《中国化学》2008,26(9):1555-1560
本文选择哌嗪 (pip) 为研究中心,分别和1,4-环己二甲酸 (H2chda)、间苯二甲酸(H2mpda)、6-羟基-2-萘甲酸 (Hohna)、1-羟基-2-萘甲酸 (Hshna) 进行超分子自组装,得到了四种新的氢键超分子体系:H2pip·chda (1), H2pip·2Hmpda (2), H2pip·ohna·2H2O (3),H2pip·shna (4)。单晶结构分析表明:1-3为三维氢键超分子结构,而 4为一维链状氢键结构。  相似文献   

13.
The known 1,8‐naphthyridine‐2,7‐dicarboxaldehyde was prepared by SeO2 oxidation of 2,7‐dimethyl‐1,8‐naphthyridine. The dimethylated naphthyridine molecule was assembled from an adaptation of the Skraup synthesis using 2‐amino‐6‐methylpyridine and crotonaldehyde to afford a reproducible 37% yield, and constitute a significant advance over the literature of this reaction. The condensation of 1,8‐naph‐thyridine‐2,7‐dicarboxaldehyde with various primary amines (R = ‐C6H11, ‐CH2C6H5, ‐C(CH3)3, ‐C10H15, and CH2CH2SCH2CH3) in alcohol affords diimines 1(a‐e) . The inherent crystallinity of 1(a‐e) affords pure compounds in reasonable to excellent yields (ca. 70%) after evaporation of solvent and recrystallization. The anticipated spectroscopic features of (N=C‐H) 1H nmr shift and v(C=N) in the ir spectrum appear around 8.50 δ and 1640 cm?1, respectively, for the series 1(a‐e) . These novel naph‐thyridines typically display the signature 1H nmr doublets at ca. 8.15‐8.30 δ ascribed to the 3 and 4 naphthyridine protons, consistent with a mirror plane (through the quaternary carbons) perpendicular to the naphthyridine plane, and syn, syn relationships of the naphthyridine moiety with each imine nitrogen lone pair. Complexation studies of 1(a‐e) with transition metals of biological relevance such as copper(I) and copper(II) will be reported elsewhere.  相似文献   

14.
The electronic nature of the substituent in naphthalic anhydride has a substantial effect on the isomeric composition of the naphthaloperinones formed in reactions with 1,8-naphthylenediamine. An electron-accepting substituent in the 4 position of naphthalic anhydride promotes predominant retention of the carbonyl group in the 1 position, while an electrondonating substituent promotes retention of the carbonyl group in the 8 position of the naphthalene ring. 10-Amino- and 11-amino-14H-benzo[4,5]isoquinolino[2,1-a]perimidin-14-ones were synthesized.For Communication II see [1].Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1420–1422, October, 1970.  相似文献   

15.
2‐Acetylbenzothiazole ( 1 ) reacts with dimethylformamide dimethylacetal (DMF‐DMA) to afford the enaminone 2. Compound 2 reacts regioselectively with some nitrilimines 5a–d and nitrile oxides 6b–d to afford the novel pyrazole and isoxazole derivatives 11a–d and 12b–d, respectively, which react with hydrazine hydrate to give the new pyrazolo[3,4‐d]pyridazine and isoxazolo[3,4‐d]pyridazine derivatives 13a–d and 14b–d, respectively. The enaminone 2 reacts with 1H‐benzimidazole‐2‐acetonitrile ( 17 ) to afford the pyrido[1,2‐a]benzimidazole derivatives 19. Compound 2 reacts also with 5‐amino‐3‐phenylpyrazole ( 20 ) and with guanidine to afford the new pyrazolo[1,5‐a]pyrimidine and the 2‐aminopyrimidine derivatives 22 and 24, respectively. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 417–422, 1999  相似文献   

16.
1,3,6,8‐Tetra‐tert‐butylcarbazol‐9‐yl and 1,8‐diaryl‐3,6‐di(tert‐butyl)carbazol‐9‐yl ligands have been utilized in the synthesis of potassium and magnesium complexes. The potassium complexes (1,3,6,8‐tBu4carb)K(THF)4 ( 1 ; carb=C12H4N), [(1,8‐Xyl2‐3,6‐tBu2carb)K(THF)]2 ( 2 ; Xyl=3,5‐Me2C6H3) and (1,8‐Mes2‐3,6‐tBu2carb)K(THF)2 ( 3 ; Mes=2,4,6‐Me3C6H2) were reacted with MgI2 to give the Hauser bases 1,3,6,8‐tBu4carbMgI(THF)2 ( 4 ) and 1,8‐Ar2‐3,6‐tBu2carbMgI(THF) (Ar=Xyl 5 , Ar=Mes 6 ). Structural investigations of the potassium and magnesium derivatives highlight significant differences in the coordination motifs, which depend on the nature of the 1‐ and 8‐substituents: 1,8‐di(tert‐butyl)‐substituted ligands gave π‐type compounds ( 1 and 4 ), in which the carbazolyl ligand acts as a multi‐hapto donor, with the metal cations positioned below the coordination plane in a half‐sandwich conformation, whereas the use of 1,8‐diaryl substituted ligands gave σ‐type complexes ( 2 and 6 ). Space‐filling diagrams and percent buried volume calculations indicated that aryl‐substituted carbazolyl ligands offer a steric cleft better suited to stabilization of low‐coordinate magnesium complexes.  相似文献   

17.
The structure of the title compound, C14H19N2+·C9H3Cl6O4?·H2O, consists of singly ionized 1,4,5,6,7,7‐hexachlorobicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylic acid anions and protonated 1,8‐bis(dimethylamino)naphthalene cations. In the (8‐dimethylamino‐1‐napthyl)dimethylammonium cat­ion, a strong disordered intramolecular hydrogen bond is formed with N?N = 2.589 (3) Å. The geometry and occupancy obtained in the final restrained refinement suggest that the disordered hydrogen bond may be asymmetric. Water mol­ecules link the anion dimers into infinite chains via hydrogen bonding.  相似文献   

18.
Two series of novel platinum(II) 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl][X] ( 1 – 9 ) and [Pt(N5Cn)(C?CR)][X] ( 10 – 13 ) (X=trifluoromethanesulfonate (OTf) or PF6; R=C6H5, C6H4p‐CF3 and C6H4p‐N(C6H5)2), with various chain lengths of the alkyl groups on the nitrogen atom of the pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X‐ray crystallography. Two amphiphilic platinum(II) 2,6‐bis(1‐tetradecylpyrazol‐3‐yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 ( 7 ) and [Pt(N5C14)(C?CC6H5)]PF6 ( 13 ), were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air–water interface. The characterization of such LB films has been investigated by the study of their surface pressure–area (π–A) isotherms, UV/Vis spectroscopy, XRD, X‐ray photoelectron spectroscopy (XPS), FTIR, and polarized IR spectroscopy. The luminescence property of 13 in LB films has also been studied.  相似文献   

19.
N‐(2‐Bromoethyl)‐4‐piperidino‐1,8‐naphthalimide, C19H19BrN2O2, (I), and N‐(3‐bromopropyl)‐4‐piperidino‐1,8‐naphthalimide, C20H21BrN2O2, (II), are an homologous pair of 1,8‐naphthalimide derivatives. The naphthalimide units are planar and each piperidine substituent adopts a chair conformation. This study emphasizes the importance of π‐stacking interactions, often augmented by other contacts, in determining the crystal structures of 1,8‐naphthalimide derivatives.  相似文献   

20.
In the title complex, [Zn(C12H6O4)(H2O)]n, a ZnII polymer based on naphthalene‐1,8‐dicarboxylate (1,8‐nap), the ZnII atoms adopt an elongated octahedral coordination geometry. A zigzag chain is formed by μ2‐aqua ligands and μ2‐carboxylate groups of the 1,8‐nap ligands. Adjacent parallel chains are further linked by 1,8‐nap ligands, forming a twisted two‐dimensional layer structure along the (100) plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号