首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the ability of two‐component photoinitiator systems for efficient polymerization of 2‐ethyl‐2‐(hydroxymethyl)?1,3‐propanediol triacrylate was presented. The photophysics and photochemistry of squaraine dyes in the presence of an electron donor as well as an electron acceptor was investigated, and it was found that the photosensitizer in an excited state might act as an electron acceptor or an electron donor. The excited states of squaraines may be quenched by tetramethylammonium n‐butyltriphenylborate ( B2 ), diphenyliodonium chloride ( I1 ), and N‐methoxy‐4‐phenylpyridinium tetrafluoroborate ( NO ). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 471–484  相似文献   

2.
A block copolymer of cyclohexene oxide (CHO) and styrene (St) was prepared by using bifunctional visible light photoinitiator dibenzoyldiethylgermane (DBDEG) via a two‐step procedure. The bifunctionality of the photoinitiator pertains to the sequential photodecomposition of DBDEG through acyl germane bonds. In the first step, photoinitiated free radical promoted cationic polymerization of CHO using DBDEG in the presence of diphenyliodonium hexafluorophosphate (Ph2I+PF) was carried out to yield polymers with photoactive monobenzoyl germane end groups. These poly(cyclohexene oxide) (PCHO) prepolymers were used to induce photoinitiated free radical polymerization of styrene (St) resulting in the formation of poly(cyclohexene oxide‐block‐styrene) (P(CHO‐b‐St)). Successful blocking has been confirmed by a strong change in the molecular weight of the prepolymer and the block copolymer as well as NMR, IR, and DSC spectral measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4793–4799, 2009  相似文献   

3.
A kinetic study of the independent and simultaneous photoinitiated cationic polymerization of a number of epoxide and vinyl (enol) ether monomer pairs was conducted. The results show that, although no appreciable copolymerization takes place, these monomers undergo complex interactions with one another. These interactions are highly dependent on the epoxide monomer employed. In all cases, the rate of epoxide ring-opening polymerization is accelerated, whereas that of the vinyl ether is depressed. When highly reactive cycloaliphatic epoxides are subjected to photoinitiated cationic polymerization in the presence of vinyl ethers, the two polymerizations proceed in a sequential fashion, with the vinyl ether polymerization taking place after the epoxide polymerization is essentially complete. A mechanism involving an equilibration between alkoxy-carbenium and oxonium ions has been proposed to explain the results. In addition, the free-radical-induced decomposition of the diaryliodonium salt photoinitiator also takes place, leading to a decrease in the induction period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4007–4018, 1999  相似文献   

4.
We investigated the formation of ground‐state donor/acceptor complexes between xanthene dyes [rose bengal (RB) and fluorescein (FL)] and a diphenyliodonium (DPI) salt, which is dissolved in 2‐hydroxyethyl methacrylate (HEMA) monomer. To characterize the association constant of the complex, we have suggested a new analysis model based upon the Benesi–Hildebrand model. Because the assumption of the original Benesi–Hildebrand model is that the absorption bands are only due to the presence of the complex and that the absorption by the free component is negligible, the model cannot be applied to our systems, which is a dye‐based initiator system. For each dye, the molar absorptivity of the ground‐state complex was evaluated as a function of wavelength, and this analysis confirmed the validity of the modified Benesi–Hildebrand model. In addition, we observed that the RB/DPI photoinitiator system failed to produce a perceptible polymerization rate but the FL/DPI photoinitiator system provided high rates of polymerization. On the basis of the association constant for these complexes, we concluded that the observed kinetic differences arise from the different association constant values of the ground‐state dye‐acceptor complex, resulting in back‐electron transfer reaction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1429–1439, 2009  相似文献   

5.
Several new epoxide monomers based on dicyclopentadiene (DCPD) were prepared using straightforward reaction chemistry. Those monomer-bearing groups in addition to the epoxy moiety, which can stabilize free radicals, display a pronounced acceleration of the rate of cationic ring-opening polymerization in the presence of diaryliodonium salt photoinitiators. Mechanistic studies conducted with the aid of model compounds have shown that the apparent rate acceleration is due to the free radical chain-induced decomposition of the photoinitiator. One of the chain carriers in this reaction involves a monomer-derived free radical. Also prepared was dicyclopentadiene monomer (V) bearing polymerizable epoxide and 1-propenyl ether groups in the same molecule. The functional groups in V appear to undergo independent vinyl and epoxide ring-opening polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3427–3440, 1999  相似文献   

6.
Starting with nopol [(R)‐(−)‐2‐(2′‐hydroxyethyl)‐6,6‐dimethyl‐8‐oxatricyclo[3.1.1.12,3]octane, I] as a substrate, two new, interesting monomers, allyl nopol ether epoxide III and nopol 1‐propenyl ether epoxide IV, were prepared. The photoinitiated cationic polymerizations of these two monomers as well as several other model compounds were studied using real‐time infrared spectroscopy. Surprisingly, the rates of epoxide ring‐opening polymerization of both monomers were enhanced as compared to those of the model compounds. Two different mechanisms which involve the free radical induced decomposition of the diaryliodonium salt photoinitiator were proposed to explain the rate acceleration effects. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1199–1209, 1999  相似文献   

7.
The photoinitiated ring‐opening cationic polymerization of a monofunctional benzoxazine, 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine, with onium salts such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate as initiators was examined. The structures of the polymers thus formed were complex and related to the ring‐opening process of the protonated monomer either at the oxygen or nitrogen atoms. The phenolic mechanism also contributed, but its influence decreased with decreasing monomer concentration. Thermal properties of the polymers were also investigated by differential scanning calorimetry and thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3320–3328, 2003  相似文献   

8.
Several 1‐butenyl and 1‐pentenyl ether monomers were prepared by the ruthenium catalyzed multistage double bond isomerization of the corresponding 3‐butenyl and 4‐pentenyl ethers and characterized. Employing tris(triphenylphosphine)ruthenium(II) dichloride as a catalyst, the isomerization of octyl 4‐pentenyl ether to octyl 1‐pentenyl ether in 60% yield could be achieved in 110 min at 200–205°C. Under similar conditions, 3‐butenyl octyl ether was isomerized to 1‐butenyl octyl ether in greater than 99% yield. The reactivities of both types of monomers in photoinitiated cationic polymerization were determined using real‐time infrared spectroscopy and the monomers were found to polymerize at very nearly the same rate in the presence of a diaryliodonium salt photoinitiator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 199–209, 1999  相似文献   

9.
Fluorescence spectroscopy was used to study the kinetics of polymerization of acrylic adhesive formulations exposed to a 355‐nm pulsed emission from an Nd‐YAG laser. Nine fluorescent probes were used for monitoring the laser curing, showing different sensitivities. In general, the fluorescence intensity emission increased as crosslinking occurred. In addition, solvatochromic fluorescent probes showed a blueshift in their emission. A relative method was applied for the evaluation of the polymerization rates in three different acrylic systems. Special features of pulsed‐laser‐induced polymerization were treated in detail, such as the influence of the laser pulse frequency and the incident laser beam intensity. The polymerization rate slowed down as the pulse repetition rate decreased. An inhibition period due to oxygen quenching was observed, and it was highly dependent on the laser repetition rate and the nature of the photoinitiator. The effect of the laser beam intensity on the kinetics of such fast reactions was studied. In general, increasing the laser energy improved the rate of polymerization. The degree of cure improved as the polymerization rate increased as a result of faster crosslinking, rather than relaxation volume kinetics. Moreover, a saturation rate effect occurred that depended on the photoinitiator. The different behaviors of the two photoinitiators in the curing of the same acrylic formulation was explained on the basis of primary radical termination. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1227–1238, 2004  相似文献   

10.
A recyclable solid‐state photoinitiator based on the surface modified niobium hydroxide is prepared and successfully introduces into reversible addition–fragmentation chain transfer (RAFT) polymerization under visible light illumination. It is revealed by gel permeation chromatography analysis that well‐defined polymers with controlled molecular weight and narrow polydispersity index can be achieved when the feed ratio of photoinitiator to the RAFT agent was controlled properly. It is also found that the polymerization is highly responsive to external stimulus and when light is removed from the system polymerization stops almost immediately. In addition, the photoinitiator can be recycled and reused to initiate the polymerization for many times without significant decrease of initiation efficiency. At last, the mechanism for the light initiated polymerization is proposed to illuminate how the initiation and chain propagation proceed. This facile, green and visible light initiation methodology could attract more and more applications in polymer science with the depletion of fossil energy. A recyclable solid‐state photoinitiator based on the surface modified niobium hydroxide was prepared and successfully introduced into reversible addition–fragmentation chain transfer (RAFT) polymerization under visible light illumination. It is revealed that well‐defined polymers with controlled molecular weight and narrow polydispersity index (PDI) can be achieved when the feed ratio of photoinitiator to the RAFT agent was controlled properly. It is also found that the polymerization is highly responsive to light initiation. In addition, the photoinitiator can be recycled and reused to initiate the polymerization for many times without significant decrease of initiation efficiency. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2715–2724  相似文献   

11.
This communication reports the development of an efficient three‐component visible light sensitive photoinitiator system for the cationic ring‐opening photopolymerization of epoxide monomers and epoxide functional oligomers. The photoinitiator system consists of camphorquinone in combination with a benzyl alcohol to generate free radicals by the absorption of visible light. Subsequently, the radicals participate in the free radical chain induced decomposition of a diaryliodonium salt. The resulting strong Brønsted acid derived from this process catalyzes the cationic ring‐opening polymerization of a variety of epoxide substrates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 866–875, 2009  相似文献   

12.
The polymerization of acrylonitrile initiated by cerium(IV) ammonium nitrate in combination with dihydroxy functional photoinitiator namely, 2‐hydroxy‐1‐[4‐(2‐hydroxyethoxy)phenyl]‐2‐methyl propan‐1‐one (HE‐HMPP), Irgacure 2959, has been investigated in aqueous nitric acid. A novel mid‐chain macrophotoinitiator of polyacrylonitrile (PAN) was obtained. The effects of acrylamide (AAm), HE‐HMPP, Ce(IV), and HNO3 concentrations and temperature on the polymerization rate, monomer conversion, and intrinsic viscosities were investigated. The photodegradation and IR, H NMR, UV, and fluorescence spectroscopic studies revealed that PAN with desired photoinitiator functionality in the middle of the chain was obtained. The obtained PAN was used as prepolymer for photoinduced free radical polymerization of methyl methacrylate (MMA) and AAm to produce block copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5404–5413, 2008  相似文献   

13.
Photoinitiated cationic polymerization by photosensitization of diphenyliodonium and triphenylsulfonium salts is shown to proceed by two distinct electron transfer process: (1) direct electron transfer from excited-state photosensitizers and (2) indirect electron transfer from photogenerated radicals. The efficiency of the former process is attributed to the instability of the reduction products (from diphenyliodonium and triphenylsulfonium salts), which dissociate in competition with undergoing energy-wastage reverse electron transfer. Amplification of photons in the production of protons (or other reactive cations) is postulated to account for the high quantum yields observed in the latter process. Potential advantages of utilizing the indirect redox process in the design of UV curable hybrid systems, which contain functionality for both radical and cationic polymerization, are noted. The results also provide evidence against the importance of triplet states of the onium salts in photoinitiator activity.  相似文献   

14.
By combining frontal polymerization and radical‐induced cationic polymerization, it was possible to cure thick samples of an epoxy monomer bleached by UV light. The effect of the relative amounts of cationic photoinitiator and radical initiator was thoroughly investigated and was related to the front's velocity and its maximum temperature. The materials obtained were characterized by quantitative conversion also in the deeper layers, not reached by UV light. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2066–2072, 2004  相似文献   

15.
The photopolymerization of several di- and tetrafunctional (meth)acrylic monomers in the presence of a styrene–butadiene–styrene polymeric matrix (SBS) has been studied. Electron spin resonance spectroscopy (ESR) and differential scanning photocalorimetry (photo-DSC) were used as monitoring techniques to identify the photogenerated radicals and analyze photopolymerization profiles, radical environments, and radical secondary reactions. The study of the photopolymerization and/or photocrosslinking reactions of these monomers in the solid media was carried out by taking into consideration different factors, such as the influence of both monomer and photoinitiator structures on the hydrogen abstraction in the binder with formation of benzylic and allylic radicals, the polymerization of the monomers itself and the hydrogen abstraction reaction in the polymerized acrylic chains. Finally, irradiation of the system SBS/photoinitiator in the absence of monomer was also accomplished. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2775–2783, 1998  相似文献   

16.
The performance of a series of 1-amino-2,6-dicyano-3,5-diphenylbenzene derivatives (i.e., meta-terphenyls) as fluorescent molecular probes for monitoring cationic photopolymerization of monomers by the Fluorescence Probe Technique (FPT) was studied. It was found that the m-terphenyls accelerate the cationic photopolymerization initiated with diphenyliodonium photoinitiators at the wavelength where the photoinitiator alone does not work. Consequently, application of the m-terphenyls in a dual role: (a) as fluorescent probes for monitoring the cationic polymerization progress, and (b) as long-wavelength sensitizers for diphenyliodonium photoinitiators is proposed. Next, a precise method for determination of relative sensitization efficiency of the sensitizers has been devised and applied for evaluation of the performance of the m-terphenyl sensitizers in comparison to that of a commercial sensitizer: 2,4-diethyl-9H-thioxanthen-9-one.  相似文献   

17.
The UV photopolymerization of trimethylolpropane triacrylate with a photoinitiator of 2‐ethylanthraquinone is monitored using the variation of resonant resistance of a quartz crystal resonator to investigate the polymerization kinetics. The roles of initiator concentration and irradiation time are experimentally examined, and it is found that two different kinetics are involved in the photopolymerization. The initiator radicals produced by the UV light proceed the polymerization as long as the monomer remains even after the UV illumination has stopped. The experimental results indicate that the photopolymerization has the first‐order kinetics at the first‐ and the zeroth‐order kinetics followed. With the high concentration of initiator the polymerization occurs in the first‐order kinetics only, and so does with long irradiation time. The polymerization constants of the first and zeroth‐order kinetics are estimated from monitoring monomer amounts at different polymerization conditions. The photopolymerization is characterized with the FTIR spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
We describe the synthesis and cationic photopolymerization of a C60 derivative bearing a 2,4,6‐tris(epoxynonyloxy)phenyl moiety (FB9ox). Rheological analysis of monomer indicates that temperature of 130 °C yields sufficiently low viscosity for polymerization. A thin film of the liquid monomer has been cationically photopolymerized with a photoinitiator system of curcumin and p‐(octyloxyphenyl)phenyliodonium hexafluoroantimonate, which harvests 424 nm light instead of commonly used ultraviolet light. The degree of polymerization was determined with ATR‐IR. The reaction is the first recorded photopolymerization of a fullerene derivative thin film. The polymer exhibits good mechanical and chemical stabilities. The polymerization can also be achieved by annealing at 150 °C without illumination, but with a smaller degree of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5194–5201, 2008  相似文献   

19.
A 1,3‐benzodioxole derivative of naphthodioxinone, namely 2‐(benzo[d][1,3]dioxol‐5‐yl)‐9‐hydroxy‐2‐phenyl‐4H‐naphtho[2,3‐d][1,3]dioxin‐4‐one was synthesized and characterized. Its capability to act as caged one‐component Type II photoinitiator for free radical polymerization was examined. Upon irradiation, this photoinitiator releases 5‐benzoyl‐1,3‐benzodioxole possessing both benzophenone and 1,3‐dioxole groups in the structure as light absorbing and hydrogen donating sites, respectively. Subsequent photoexcitation of the benzophenone chromophore followed by hydrogen abstraction generates radicals capable of initiating free radical polymerization of appropriate monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Maleic anhydride (MAH) was photografted onto low‐density polyethylene (LDPE) films with a grafting efficiency of about 70% in the absence of a photoinitiator. The self‐initiating performance was attributed to a mechanism of abstracting hydrogen atoms from LDPE chains by excited MAH dimers. The supporting experimental results were as follows: (1) the far‐UV radiation (200–300 nm) was indispensable for the graft polymerization and 2) the crosslinking reaction of LDPE inevitably accompanied the grafting of MAH. In addition, the initiation performance of MAH was further confirmed by surface photografting of acrylic acid in the presence of MAH, where MAH was used as the photoinitiator. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3246–3249, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号