首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EVOH nanocomposites containing organically treated clays are unique systems in which the clay is strongly attracted to EVOH, thus affecting the morphology and the resultant thermal and mechanical properties. A strong effect of the processing conditions on morphology, thermal, and mechanical properties was observed. In highly interacting systems, under dynamic mixing conditions, in addition to a fracturing process of the clay particles, an onion‐like delamination process is suggested. EVA‐g‐MA and LLDPE‐g‐MA, having polar groups, were studied as compatibilizers to further induce clay intercalation and exfoliation. The compatibilizers affected both the thermal and mechanical properties of the composites at different levels. Thermal analysis showed that with increasing compatibilizer content lower crystallinity levels result, until at a certain content no crystallization has taken place. A Ny‐6 (nylon‐6)/EVOH blend is an interesting host matrix for incorporation of low organoclay contents. The Ny‐6/EVOH blend is a unique system that tends to hydrogen bond and also to in situ chemically react during melt mixing. The addition of clay seems to interrupt the chemical reaction between the two host polymers at certain compositions, leading to lower melt blending torque levels when clay is present. A competition between Ny‐6 and EVOH regarding the intercalation process takes place. However, Ny‐6 seems to lead to exfoliated structures, whereas EVOH forms intercalated structures, as revealed from combined XRD and TEM experiments, owing to thermodynamic considerations and preferential localization of the clay in Ny‐6. Of special interest is the increased storage modulus seen by the presence of only 1 wt % clay, which was achieved by extrusion under high shear forces, leading to a completely exfoliated structure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1931–1943, 2005  相似文献   

2.
The thermal oxidative stability and the effect of water on gas transport and mechanical properties of blends of polyamide 6 (PA6) with ethylene‐co‐vinyl alcohol (EVOH) and EVOH modified with carboxyl groups (EVOH‐COOH) have been investigated. The presence of EVOH reduces water vapor and oxygen gas permeability of polyamide, as well as small amounts of EVOH‐COOH further improve barrier properties, especially to oxygen. This has been explained in terms of improved interactions of the blend constituents in the amorphous phase, due to ionic linkages between the polyamide amino groups and the carboxyls of modified EVOH. The permeation to gases was found to increase with the amount of sorbed water. The morphology of the samples was found to have an effect on barrier properties, as the presence of EVOH causes the PA6 α crystalline form to increase, lowering the permeability to oxygen and water vapor. Mechanical properties are strongly affected by water sorption, as tensile modulus and strength decrease with increasing water content. Chemiluminescence (CL), infrared spectroscopy (FTIR), and tensile test were employed in order to assess the correlation between chemical composition and the thermal oxidative stability of the films aged at 110 °C in air. CL experiments suggest that the presence of EVOH and EVOH‐COOH efficiently inhibits the formation of peroxidized species during the processing, and increases the thermal oxidative stability of the films. Infrared spectroscopy showed a build‐up of carbonyl absorption in the range 1700–1780 cm?1, due to the formation of oxidation products, which is greater in the case of the pure polymer. Tensile tests on films revealed a reduction in ductility as a result of ageing for neat PA6, whereas in comparison the blends exhibit a far better long‐term stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 840–849, 2007  相似文献   

3.
New dianhydrides containing t‐butyl and phenyl pendant groups have been synthesized and used as monomers, together with commercial diamines, to prepare novel polyimides. The influence of the chemical structure of the monomers on their reactivity has been studied by quantum semiempirical methods. The polyimides have been characterized by FTIR and by NMR in the case of soluble polymers. The presence of pendant groups and the method used to imidize polyimide precursors greatly affected polymer properties such as solubility, glass transition temperature, thermal stability, and mechanical properties. As a rule, the novel polyimides showed better solubility in organic solvents than the parent polyimides. Glass transition temperatures in the range 250–270°C and decomposition temperatures over 520°C were observed for the set of current polymers. Tensile strengths up to 135 MPa and mechanical moduli up to 3.0 GPa were measured on films of the current polyimides. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 805–814, 1999  相似文献   

4.
Glycopolymers based on the incorporation of a diaminobutylmaltotrionolactone onto activated ethylene‐vinyl alcohol, EVOH, copolymers with distinct composition in the former counit have been prepared. Previous transformation of initial hydroxyl EVOH groups to other more reactive functional groups has been required. The activation has been performed in this current investigation by functionalization with either 4‐nitrophenyl carbonate or o‐phthalic acid groups. The structure of the resulting novel water‐soluble glycopolymers has been confirmed by FTIR, 1H and 13C‐NMR spectroscopies. In addition, the glass transition temperatures and thermal stability as well as the viscoelastic behavior in bulk and in water solution have been examined as a function of chemical linkage nature. The rheological evaluation confirms the reversible gel formation in all the cases. Finally, their affinity to Concanavalin A lectin has been also analyzed proving the feasible use of these glycopolymers as molecular recognition materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 719–729, 2010  相似文献   

5.
Ethylene–vinyl alcohol copolymers, EVOH, with two different vinyl alcohol compositions have been functionalized with carboxylic acid groups by reaction with phthalic anhydride. Later on, the coupling reaction of three aminosaccharides (D ‐(+)‐glucosamine, D ‐(+)‐galactosamine, and D ‐(+)‐mannosamine) to functionalized EVOH copolymers has been carried out in dimethyl sulfoxide at 70 °C to achieve water soluble glycopolymers. The structure of the resulting functionalized copolymers and the new glycopolymers was confirmed by 1H and 13C NMR. Likewise, the thermal behavior of glycopolymers has been performed by differential scanning calorimetry and thermal gravimetric analysis. In addition, their affinity to lectins, specifically to Concanavalin A and Ricinus Communis Agglutinin, has been evaluated. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7238–7248, 2008  相似文献   

6.
A series of novel polyesters containing conjugated diacetylenes (DA‐polyesters) were prepared from various diacetylene diols with/without methyl side groups and isomers of aromatic acid chlorides via an interfacial condensation. A fully aliphatic DA‐polyester was also prepared for comparison. All synthesised DA‐polyesters are soluble in m‐cresol, and the intrinsic viscosities were measured. In addition, compact and coherent films and sheets can be obtained from some of the polymers via solution or melt casting. The structure, morphology, and properties were characterized using spectroscopic methods, including FTIR, Raman, and WAXD and thermal analysis including TGA, DSC techniques. DMA was carried out on the solution‐cast thin films and melt‐processed samples. Close correlation was found between the structure and properties in these DA‐polyesters. In particular, through analysis using isothermal DSC and Raman spectroscopy, the solid‐state reactivity of the diacetylene groups in these polyesters was found related to the interchain spacings, which are, in turn, controlled by the molecular structure of the polymers. Results have shown that the aliphatic DA‐polyester behaves very differently compared to the aromatic ones. Distinct differences were also observed among meta‐ and para‐disubstituted isomers of the DA‐polyesters. Furthermore, the introduction of methyl side groups has dramatically affected the thermal and thermal mechanical behavior by altering the interchain spacing of the polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 965–974, 1999  相似文献   

7.
The blends of poly(hydroxyether of bisphenol A) (phenoxy) and poly(vinyl acetate) (PVAc) were prepared through in situ polymerization, i.e., the melt polymerization of diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of PVAc. The polymerization reaction started from the initial homogeneous ternary mixture of PVAc/DGEBA/bisphenol A; the phase separation induced by reaction occurred as the polymerization proceeded. The phenoxy/PVAc blends with PVAc content up to 20 wt % were obtained and were further characterized by the solubility, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM). The results indicate that no intercomponent reaction occurred during the in situ polymerization. All the blends display separate glass transition temperatures (Tg's); the very fine phase-separated morphology was obtained by this polymerization blending method. Mechanical tests show that the prepared blends exhibited substantial improvement of mechanical properties, especially in impact strength, which could be ascribed to the formation of the fine phase-separation morphology during in situ polymerization. The thermogravity analysis (TGA) of the blends showed that the thermal stability of the PVAc-rich phases in the blends was enhanced in comparison to the pure PVAc due to the synergistic contribution of the two phases in energy transportation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2329–2338, 1999  相似文献   

8.
The strength of interaction between tin phosphate glass (PGlass) filler droplets and an ethylene‐vinyl alcohol (EVOH) matrix were investigated by image, thermal, and rheological analysis. 10% PGlass droplets in EVOH were smaller than those previously observed in maleated polypropylene. Analysis using the Fox equation showed that EVOH/97 °C Tg PGlass composites are not miscible systems. Dynamic shear and extensional rheology data of those composites exhibited a weak physical network, with relaxation times longer than that of pure EVOH at all strain rates. The tensile properties of the EVOH/10 vol % PGlass composite showed it to be more ductile and flexible than a typical polymer/inorganic filler system, supporting interaction between PGlass and EVOH sufficient to interrupt polymer–polymer hydrogen bonding. While undrawn EVOH/PGlass composite films showed increased oxygen gas permeability when compared to undrawn neat EVOH film, the drawn composite films exhibited oxygen permeability 6–7 times lower than that of neat EVOH, attributed to the presence of high aspect ratio PGlass particles after orientation. The concept of hydrogen bonding between polymer and PGlass can likely be applied to other polymers such as polyamides which possess numerous hydrogen bonding sites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 989–998  相似文献   

9.
Mechanical, thermal, and electrical properties of graphite/PMMA composites have been evaluated as functions of particle size and dispersion of the graphitic nanofiller components via the use of three different graphitic nanofillers: “as received graphite” (ARG), “expanded graphite,” (EG) and “graphite nanoplatelets” (GNPs) EG, a graphitic materials with much lower density than ARG, was prepared from ARG flakes via an acid intercalation and thermal expansion. Subsequent sonication of EG in a liquid yielded GNPs as thin stacks of graphitic platelets with thicknesses of ~10 nm. Solution‐based processing was used to prepare PMMA composites with these three fillers. Dynamic mechanical analysis, thermal analysis, and electrical impedance measurements were carried out on the resulting composites, demonstrating that reduced particle size, high surface area, and increased surface roughness can significantly alter the graphite/polymer interface and enhance the mechanical, thermal, and electrical properties of the polymer matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2097–2112, 2007  相似文献   

10.
Blends of ethylene vinyl alcohol (EVOH; 44 mol% ethylene) and polyamide 6/66 (PA; 75 mol% PA 6) random copolymers were studied in the entire composition range. Specific interaction between the components was analyzed by IR spectroscopy; furthermore, coefficients related to the Flory-Huggins interaction parameter were derived from equilibrium water uptake and tensile strength. Morphology of the blends was investigated by thermal analysis (DSC), density measurements, and SEM micrographs. The two polymers form heterogeneous blends in each composition. Although the components crystallize in separate phases, the morphology and the mechanical properties are greatly affected by the association of OH and NH groups. Crystallization is restricted in the blends, and the increase of the amorphous fraction, as well as specific interaction between the components, results in essential improvement in the mechanical properties.  相似文献   

11.
The soluble poly(methyl methacrylate‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PMMA–POSS) hybrid nanocomposites with improved Tg and high thermal stability were synthesized by common free radical polymerization and characterized using FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA. The POSS contents in the nanocomposites were determined based on FTIR spectrum, revealing that it can be effectively adjusted by varying the feed ratio of POSS in the hybrid composites. On the basis of the 1H NMR analysis, the number of the reacted vinyl groups on each POSS molecules was determined to be about 6–8. The DSC and TGA measurements indicated that the hybrid nanocomposites had higher Tg and better thermal properties than the pure PMMA homopolymer. The Tg increase mechanism was investigated using FTIR, displaying that the dipole–dipole interaction between PMMA and POSS also plays very important role to the Tg improvement besides the molecular motion hindrance from the hybrid structure. The thermal stability enhances with increase of POSS content, which is mainly attributed to the incorporation of nanoscale inorganic POSS uniformly dispersed at molecular level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5308–5317, 2007  相似文献   

12.
Metallocene catalyst technology was utilized to prepare functionalized polyethylenes, which were used as compatibilizers in polyethylene/polyamide 6 (40/60) blends. Polymerization of ethylene with 10-undecen-1-ol, 10-undecenoic acid, or N-methyl-10-undecenylamine resulted in ethylene copolymers with a small amount (0.2–1.2 mol %) of functionalized side chains. The blends were prepared in a twin-screw midiextruder, and injection molded with a mini-injection molding machine. The effect of the new compatibilizers on morphology and mechanical and thermal properties was studied. Toughness as well as stiffness and strength increased significantly with an addition of 10 wt % compatibilizer. Morphology became much more uniform, and crystallization and melting behavior changed. The Molau test with FTIR analysis was used to determine that the desired reactions between the compatibilizer and polyamide had actually taken place. The results showed functionalized polyethylenes prepared with metallocene catalysts to act as effective compatibilizers in polyethylene/polyamide 6 blends. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3099–3108, 1999  相似文献   

13.
Herein, we report for the first time the successful preparation of ethylene–vinyl alcohol (EVOH)/poly(vinyl alcohol) (PVOH) blends by a melt blending process for PVOH volume content ranging from 0 to 30%. Thermal stability up to 270 °C was maintained for all blends. The blends morphology consisted in spherical low size PVOH domains homogeneously dispersed in the EVOH matrix with good interfacial properties. An increase of the mean size of the PVOH domains (from 0.3 to 1.2 μm) and of the size distribution was evidenced as the PVOH content increased. The contribution of each phase to the water sorption and diffusion was clearly demonstrated. The impact of water uptake was investigated on the chains mobility by using Gordon–Taylor law and on the mechanical properties of the blends with respect to the reference polymers. It was pointed out that the reinforcing effect of PVOH phase decreased as the water activity increased. However, a significant elongation at break was maintained, underlining the major role played by the EVOH continuous phase at high water activity. Finally, it was shown that adding PVOH to EVOH up to 15 vol % allowed strengthening the material at low water activity and keeping interesting elongation at break and barrier properties at high water activity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 838–850  相似文献   

14.
The dynamic‐mechanical properties of different mixtures formed by an epoxy resin (DGEBA type) and a phenolic resin (resole type) cured by trietylenetetramine and/or p‐toluensulphonic acid at different concentrations have been studied by means of dynamic mechanical thermal analysis (DMTA). All samples were cured by pressing at 90 °C during 6 h. The mechanical studies were performed between ?100 to 300 °C at a heating rate of 2 °C/min. This study was also carried out for the epoxy‐TETA and phenolic‐p‐toluensulphonic acid systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1548–1555, 2005  相似文献   

15.
Polyimides derived from a new dianhydride with p-nitrophenyl pendant groups have been synthesized and their properties compared with those of a reference series, without side groups. The polymers were obtained by combination of the novel monomer with aromatic diamines, in a two-step procedure that involved the synthesis of poly(amic acid) or poly(amic silyl ester) intermediates and the cyclization of them to polyimides by thermal treatment. The introduction of the polar nitro groups caused significant increase of the Tgs. On the contrary, the thermal stability was reduced because of the breakdown of CAr—NO2 linkages around 400oC. A slight decrease in mechanical properties was observed, due to the bulkiness of the side groups, that also produced an important decrease in the strength of the β relaxation, as determined by dynamic mechanical analysis. The solubility of the current polyimides in organic solvents was as poor as that of the parent unsubstituted polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3377–3384, 1999  相似文献   

16.
A series of chromophore-functionalized polyimide prepolymers with excellent processibility were prepared by a Michael addition reaction of diamine chromophore 2 with structurally different bismaleimide (BMI) monomers. The effects of the BMI moiety's structure and thermal curing condition on glass transition temperature (Tg) and thermal stability of the polyimides were studied by DSC, TGA, and FTIR. Among the five cured polyimides, PI3, bearing a sulfone moiety, exhibited the highest Tg and thermal decomposition temperature (Td). Its corresponding prepolymer, PP3, was selected to evaluate NLO properties in a simultaneously poling and thermal polymerization process. A relatively large poling-order parameter was observed. The second-order nonlinear coefficient, d33, was 25 pm/V at 1064 nm fundamental wavelength. The second harmonic generation signal was almost without decay up to 170°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3598–3605, 1999  相似文献   

17.
Two polybenzoxazines are cured in an autoclave from the polyfunctional benzoxazine monomers, 8,8′-bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine) and 6,6′-bis(2,3-dihydro-3-phenyl-4H-1,3-benzoxazinyl) ketone. The density and tensile properties of these polybenzoxazines are measured at room temperature. Dynamic mechanical tests are performed to determine the Tg, crosslink density, and the activation enthalpy of the glass-transition process for these two polybenzoxazines. The effect of postcure temperature on the Tg of the polymers is investigated and discussed in terms of crosslink density. Fourier transform infrared (FTIR) spectroscopy is also applied for the molecular characterization of the curing systems. Thermal properties of these polybenzoxazines are studied in terms of isothermal aging and decomposition temperature via thermogravimetric analysis. These two polybenzoxazines show mechanical and thermal properties similar to or better than bismaleimides and some polyimides. They also show very high char yield after being carbonized in a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3257–3268, 1999  相似文献   

18.
The thermal and mechanical properties of polybenzoxazine thermoset networks containing varying amounts of phenolic Mannich bridges, arylamine Mannich bridges, and methylene bridges have been investigated. In materials based on m‐toluidine and 3,5‐xylidine, the onset of thermal degradation is delayed until around 350 °C with no significant effect on the final char yield. The first of the three weight‐loss events usually seen in aromatic amine‐based polybenzoxazines is absent in these two materials. Materials with additional amounts of arylamine Mannich bridges and methylene bridges show improved mechanical properties, including higher crosslink densities and rubbery plateau moduli. Correlations between the observed mechanical properties and network structures are established. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3289–3301, 2000  相似文献   

19.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   

20.
The molecular dynamics of new poly (ω‐dodecalactam‐co‐ε‐caprolactam‐co‐propylene oxide) copolymers (DL/CL/PAC) has been investigated by using dynamic mechanical thermal analysis (DMTA) and dielectric relaxation spectroscopy (DRS) measurements. The copolymers were synthesized via anionic polymerization of relevant lactams activated with carbamoyl derivatives of telechelic hydroxyl terminated polypropylene oxide with isophorone diisocyanate (PAC). The calorimetric, X‐ray diffraction, and DMTA measurements were performed to recognize the influence of the composition ratio and the type of PAC on the physical, thermal, and mechanical properties of the synthesized copolymers. The DRS was used to study the frequency dependence of the dielectric permittivity of some isotherms from ?110 to 145 °C. Copolymerization of ε‐caprolactam with about 10 wt % ω‐dodecalactam results in a copolymer that has lower water absorption, a melting point close to that of polyamide 6 and has a high enough degree of crystallinity in respect to high storage modulus. Five dielectric relaxations have been observed in the dielectric spectra, three at lower temperature and two at higher temperature. The copolymers have two glass transition temperatures for polyamide segments and polyether blocks, indicating microphase separation in the copolymers. Other studies directed toward molecular dynamics of polyamide DL/CL/PAC copolymers have not been reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号