首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spiro orthoesters give poly(cyclic orthoester)s by single ring-opening polymerization in the presence of acid catalysts, and this process undergoes the equilibrium polymerization. We have applied the function of equilibrium polymerization to chemical recycling of polymeric materials. Crosslinked poly(cyclic orthoester)s, prepared by radical additions of poly(cyclic orthoester)s possessing exomethylene groups and dithiols, efficiently decrosslinked to bifunctional spiro orthoesters in the presence of CF3CO2H in CH2Cl2. The dithiol-linked bifunctional spiro orthoester monomers, prepared by the radical additions of spiro orthoester possessing exomethylene group and dithiols, afforded the corresponding crosslinked polymers in the presence of CF3CO2H as a catalyst in bulk. The decrosslinking of the obtained crosslinked polymer proceeded quantitatively to obtain the corresponding bifunctional monomer at room temperature in CH2Cl2. Further, an acid-catalyzed reversible crosslinking-decrosslinking of a polymer having a spiro orthoester group in the side chain was carried out. The copolymer obtained by the radical copolymerization of 2-methylene-1,4,6-trioxaspiro[4.6]undecane with acrylonitrile was treated with CF3CO2H at −10 °C in CH2Cl2 to afford the crosslinked polymer quantitatively. The crosslinked polymer was then treated with CF3CO2H at room temperature at a low concentration in CH2Cl2 to recover the original polymer.  相似文献   

2.
A spiro orthoester with an exomethylene group (exoSOE) was radically copolymerized with acrylonitrile or vinyl acetate at several feed ratios to obtain the corresponding copolymers having spiro orthoester moieties in the side chain. The obtained copolymers could be crosslinked via the double ring‐opening polymerization of the spiro orthoester moieties in their side chain by a treatment with BF3OEt2. The volume changes upon the crosslinking of the copolymers were evaluated by density measurements with a micromeritics gas pycnometer. The copolymers experienced less than 1% volume expansion instead of volume shrinkage during typical cationic crosslinking, regardless of the copolymer compositions. Negligible shrinkage was observed during the thermal cationic crosslinking of a film cast from a nitrobenzene solution of the copolymers containing a benzylthiophenium salt as a thermally latent cationic initiator. The constantly low volume changes during the crosslinking of the copolymers from exoSOE probably depended on the almost zero volume change during the cationic polymerizations of spiro orthoester derivatives. This indicates that exoSOE is an effective monomer for crosslinkable polymers without volume changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3666–3673, 2006  相似文献   

3.
This article summarizes our recent efforts to chemical recycling of polymeric materials based on the equilibrium polymerization character of cyclic monomers. Spiro orthoesters ( SOE s), bicyclo orthoester, cyclic carbonates, and dithiocarbonates undergo ring-opening polymerization to afford the corresponding polymers, and the resulting polymers depolymerize to give the starting monomers under cationic or anionic conditions. Further, crosslinking and decrosslinking systems of bifunctional SOE s and a polymer having SOE moiety in the side chain are described.  相似文献   

4.
Divinyl ether monomers containing phosphorous residues were synthesized by the addition reaction of glycidyl vinyl ether (GVE) with various phosphonic dichlorides or dichlorophosphates with quaternary onium salts as catalysts. The reaction of GVE with phenylphosphonic dichloride gave bis[1‐(chloromethyl)‐2‐(vinyloxy)ethyl]phenylphosphonate ( 1a ) in a 77% yield. The polycondensation of 1a with terephthalic acid was also carried out with 1,8‐diazabicyclo[5.4.0]undecene‐7 (DBU) as a condensing agent to afford the corresponding phosphorus‐containing polyester. A multifunctional monomer containing both vinyl ether groups and methacrylate groups was prepared by the reaction of 1a with methacrylic acid with DBU. The photoinitiated cationic polymerization of these vinyl ether compounds proceeded rapidly with bis[4‐(diphenylsulfonio)phenyl]sulfide‐bishexafluorophosphate as the cationic photoinitiator without a solvent upon ultraviolet irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2031–2042, 2004  相似文献   

5.
The synthesis of a novel spiro orthoester containing monomer, 1,4,6‐trioxaspiro[4.4]‐2‐nonylmethyl acrylate, is presented. This monomer was polymerized via a free‐radical system to yield the homopolymer and a series of copolymers with phosphorus‐containing comonomers. Diethyl vinyl phosphonate, allyldiphenylphosphine oxide, and diethyl(methacryoyoxymethyl)phosphonate were used in various feed ratios to produce copolymers with different phosphorous concentrations containing crosslinkable spiro orthoester side‐chain units. The crosslinking of the polymers was performed cationically with ytterbium triflate, and in all cases, the expansion of the polymer was observed. Moreover, the incorporation of phosphorus into the copolymers increased the limiting oxygen indices, regardless of the percentage of phosphorus used. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6728–6737, 2006  相似文献   

6.
The click‐coupling reaction was applied to polycondensation, to synthesize a high‐molecular weight prepolymer having benzoxazine moieties in the main chain. For the polycondensation, a bifunctional N‐propargyl benzoxazine was synthesized from bisphenol A, propargylamine, and formaldehyde. The propargyl group was efficiently used for the copper(I)‐catalyzed alkyne‐azide “click” reaction with p‐xylene‐α,α′‐diazide, to give the corresponding linear polycondensate having 1,2,3‐triazole junctions. The polycondensation proceeded in N,N‐dimethylformamide (DMF) at room temperature. By this highly efficient “click‐” polycondensation reaction, the benzoxazine ring in the monomer was successfully introduced into the polymer main chain without any side reaction. The obtained polymer (=prepolymer) underwent thermal crosslinking to afford the corresponding product, which was insoluble in a wide range of organic solvents and exhibited higher thermal stability than the polymer before crosslinking. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2316–2325, 2008  相似文献   

7.
Silicon-containing divinyl ether monomers were synthesized by the addition reaction of glycidyl vinyl ether ( 1 ) with various silyl dichlorides using tetra-n-butylammonium bromide (TBAB) as a catalyst. The reaction of 1 with diphenyl dichlorosilane gave bis-[1-(chloromethyl)-2-(vinyloxy)-ethyl]diphenyl silane ( 3a ) in 89% yield. Polycondensations of 3a with terephthalic acid were also carried out using 1,8-Diazabicyclo[5.4.0]-7-undecene (DBU) to afford silicon-containing polyfunctional vinyl ether oligomers ( 5 ). A multifunctional Si-monomer with both vinyl ether and methacrylate groups ( 7 ) was prepared by the reaction of 3a with potassium methacrylate using TBAB as a phase transfer catalyst. Photoinitiated cationic polymerizations of these vinyl ether compounds proceeded rapidly using the sulfonium salt, bis-[4-(diphenyl-sulfonio)phenyl]sulfide-bis-hexafluorophoshate (DPSP), as the cationic photoinitiator in neat mixtures upon UV irradiation. Multifunctional monomer 7 with both vinyl ether and methacrylate groups showed “hybrid curing properties” using both DPSP and the radical photoinitiator, 2,4,6-trimethylbenzoyl diphenylphoshine oxide (TPO). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3217–3225, 1997  相似文献   

8.
膨胀单体的特点是在聚合过程中没有体积收缩,甚至会产生体积膨胀,这种特殊的性能使其具有广阔的应用前景。目前可用作膨胀单体的螺环化合物主要有螺环原碳酸酯(SOC)、螺环原酸酯(SOE)和双环原酸酯(BOE)。螺环原酸酯(SOE)是最早发现能进行膨胀聚合反应的一类化合物。本文介绍了螺环原酸酯类化合物的发现、合成方法、聚合反应及应用的研究进展,并提出未来的发展前景。  相似文献   

9.
O‐Methacryloyl‐N‐(tert‐butoxycarbonyl)‐β‐hydroxyaspartic acid dimethyl ester was synthesized by methyl esterification of β‐hydroxyaspartic acid, followed by protection of the amino group with the tert‐butoxycarbonyl group and then the reaction of the hydroxyl group with methacryloyl chloride. The monomer efficiently underwent radical polymerization to afford the corresponding polymer with a number‐average molecular weight of 42,000 in good yields. The alkaline hydrolysis of the polymer occurred not only at the methyl ester but also at the ester moiety between the main and side chains of the polymer. The methyl ester‐free polymer gradually released β‐hydroxyaspartic acid moiety in a phosphate buffer solution with pH = 7.3 and 7.8. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2782–2788, 2002  相似文献   

10.
A polyaddition system consisted of a bifunctional Nn‐propyl benzoxazine and 2‐methylresorcinol ( MR ) that proceeds at ambient temperature has been developed. In this system, the aromatic ring of MR acted as a bifunctional monomer, reacting with a two equivalent amount of benzoxazine moieties via their ring‐opening reaction. The polyaddition gave the corresponding linear polymer bearing phenolic moieties bridged by Mannich‐type linkage in the main chain. The linear polymer had a high glass transition temperature, which was comparable to that of the linear polybenzoxazine synthesized by the ring‐opening polymerization of a monofunctional Nn‐propyl benzoxazine. The employment of a bifunctional N‐allyl benzoxazine in the polyaddition system resulted in the formation of the corresponding polymer with allyl pendants, which exhibited improved heat resistance due to its thermally induced crosslinking reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3867–3872  相似文献   

11.
This article deals with the cationic and anionic depolymerization of polydithiocarbonate, which was synthesized by cationic polymerization of 5‐phenoxymethyl‐1,3‐oxathiolane‐2‐thione ( 1 ) using methyl triflate as the initiator. The cationic depolymerization of the obtained polymer was carried out in the presence of 5–20 mol‐% of methyl triflate or triflic acid catalyst in chlorobenzene at 60 °C for 96 h to afford 4‐phenoxymethyl‐1,3‐dithiolan‐2‐one ( 2 ) in 35–83% yield. The anionic depolymerization of the polymer was carried out in the presence of 5 mol‐% of triethylamine or potassium tert‐butoxide at 20 °C for 24 h to afford 2 in 85–100% yield.  相似文献   

12.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A norbornene monomer bearing cyclic dithiocarbonate moiety (NB‐DTC) was successfully synthesized from the corresponding precursor having epoxy moiety by its reaction with carbon disulfide. NB‐DTC underwent the ring‐opening metathesis polymerization (ROMP) catalyzed by a ruthenium carbene complex to give the corresponding poly(norbornene). The dithiocarbonate moiety incorporated into the side chain of the obtained poly(norbornene) reacted with amine to afford the corresponding thiourethane moiety with thiol group, which underwent oxidative S‐S coupling and/or addition reaction to the C‐C double bond in the main chain, leading to formation of a cross‐linked polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

14.
This work deals with the cationic ring‐opening polymerization of the cyclic thiocarbonates 5‐benzoyloxymethyl‐5‐methyl‐1,3‐dioxane‐2‐thione ( 1 ), 5,5‐dimethyl‐1,3‐dioxane‐2‐thione ( 2 ), and 4‐benzoyloxymethyl‐1,3‐dioxane‐2‐thione ( 3 ). The polymerization was carried out with 2 mol % trifluoromethanesulfonic acid, methyl trifluoromethanesulfonate, boron trifluoride etherate, or triethyloxonium tetrafluoroborate as the initiator to afford the polythiocarbonate with a narrow molecular weight distribution accompanying isomerization of the thiocarbonate group. The molecular weight of the obtained polymer could be controlled by the feed ratio of the monomer to the initiator and increased when the second monomer was added to the polymerization mixture after the quantitative consumption of the monomer in the first stage. The block copolymerization of 2 and 3 was also achieved, and this supported the idea that the cationic ring‐opening polymerization of these monomers proceeded via a living process. The order of the polymerization rate was 3 > 2 > 1 . The cationic ring‐opening polymerization of 1 and 3 involved the neighboring group participation of ester groups according to the polymerization rate and molecular orbital calculations with the ab initio method. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 185–195, 2003  相似文献   

15.
Photoinitiated cationic polymerization of mono‐ and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real‐time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC‐containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914–4920, 2007  相似文献   

16.
Crosslinked poly(4-vinylpyridine-co-styrene) was prepared and functionalized with titanium tetrachloride to afford the corresponding poly(4-vinylpyridine-co-styrene)-titanium tetrachloride complex. This insoluble functionalized polymer-supported catalyst shows good catalytic activity for esterification reactions. In this article, the kinetics of esterification of acrylic acid with n-butanol is reported. The rate of formation of product depends on many experimental parameters, viz., stirring speed, concentration of acrylic acid, catalyst amount, temperature, percent active site, percent crosslinking, and mesh size of the polymer catalyst. The reaction rates were found to increase with increase in the stirring speed, concentration of acrylic acid, catalyst amount, and temperature, and decreases with increasing percentage crosslinking and mesh size of the polymer beads. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 727–733, 1997  相似文献   

17.
Isothiocyanate is a very useful functional group for post‐polymerization modification by the reaction with amine or alcohol. An isothiocyanate monomer, 4‐vinylbenzyl isothiocyanate, was synthesized from 4‐vinylbenzyl chloride without using any harmful reagents such as thiophosgene and CS2. The obtained monomer was successively polymerized by the conventional radical polymerization (AIBN, 1,4‐dioxane, 60 °C) to afford the corresponding polymer. The obtained polymer was characterized by 1H NMR, FTIR, thermogravimetric analysis (TGA), and differential scanning calorimetry. In contrast to the isocyanate group, the isothiocyanate group was relatively tolerant to alcohols, and this character enabled us to synthesize a copolymer of 4‐vinyl benzylisothiocyanate and (2‐hydroxyethyl methacrylate). The copolymer is transformed into networked polymer by 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as a promoter of the reaction between isothiocyanate and alcohol to afford thiocarbamate. The formation of networked polymer was characterized by FTIR and TGA. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5215–5220  相似文献   

18.
The use of the renewable resource oleic acid to produce environmentally friendly polymeric materials with potential applications as coatings was investigated in this work. Methacrylated derivative oleic acid monomer was synthesized by addition of the carboxylic acid with glycidyl methacrylate, with the aim of preserving the double bonds of the acid backbone. Two catalysts with auto‐oxidative potential were used for that purpose and the resulting monomer was further polymerized via free radical miniemulsion polymerization. Total conversion latexes with a significant amount of gel, mainly because of the crosslinking through the double bonds of the oleic acid, were obtained. No influence of the monomer type on the kinetics and microstructural properties was observed. Polymer films were evaluated and an important improvement on mechanical properties was achieved by the auto‐oxidative curing of the remaining unsaturations along the polymer backbone, promoted by the catalyst present in the latex. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A novel benzimidazole‐containing phthalonitrile monomer (BIPN) was synthesized. The chemical structure of BIPN was confirmed by various spectroscopic techniques. Differential scanning calorimetry measurement revealed that the self‐promoted polymerization reaction of the BIPN proceeds extremely sluggish and showed low polymerization exothermic effect. Subsequent rheological measurement displayed that the BIPN was able to keep a stable and low melt viscosity for 4 h at 300 °C, 2 h at 310 °C, and 50 min at 330 °C. The derived BIPN polymers showed excellent thermal properties revealed by thermogravimetric analysis, which were better than those of the corresponding polymer derived from phthalonitrile monomer without benzimidazole moiety. IR analysis confirmed the occurrence of the triazine ring within the polymer crosslinking sites. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Novel styrene monomers bearing a five or seven‐membered spiroorthoester structure (SOE5, SOE7) were synthesized and their radical polymerizations as well as volume change during crosslinking of the obtained polymers were investigated. SOE5 and SOE7 were prepared from 4‐vinylbenzyl glycidyl ether and γ‐butyrolactone or ε‐caprolactone using boron trifluoride diethyl ether complex as a catalyst, respectively. Radical polymerizations of these monomers using 2,2′‐azobisisobutyronitrile (AIBN) gave the corresponding styrene‐based polymers with keeping the spiroorthoester structures unchanged. These polymers could be transformed to networked polymers by heating with a sulfonium antimonate, a thermally latent cationic polymerization initiator. Copolymerization of SOE5 or SOE7 with styrene at various compositions was carried out to efficiently obtain the corresponding copolymers, respectively. These polymers and copolymers showed little volume shrinkage or slight volume expansion during the crosslinking. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1790–1795  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号