首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Well‐defined in‐chain norbornene‐functionalized poly(ethylene oxide)‐b‐poly(?‐caprolactone) copolymers (NB‐PEO‐b‐PCL) were synthesized from a dual clickable containing both hydroxyl‐ and alkyne‐reactive groups, namely heterofunctional norbornene 3‐exo‐(2‐exo‐(hydroxymethyl)norborn‐5‐enyl)methyl hexynoate. A range of NB‐PEO‐b‐PCL copolymers were obtained using a combination of orthogonal organocatalyzed ring‐opening polymerization (ROP) and click copper‐catalyzed azide–alkyne cycloaddition (CuAAC). Ring‐opening metathesis polymerization (ROMP) of NB‐PEO‐b‐PCL macromonomers using ruthenium‐based Grubbs’ catalysts provides comb‐like and umbrella‐like graft copolymers bearing both PEO and PCL grafts on each monomer unit. Mikto‐arm star A2B2 copolymers were obtained through a new strategy based on thiol–norbornene photoinitiated click chemistry between 1,3‐propanedithiol and NB‐PEO‐b‐PCL. The results demonstrate that in‐chain NB‐PEO‐b‐PCL copolymers can be used as a platform to prepare mikto‐arm star, umbrella‐, and comb‐like graft copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 4051–4061  相似文献   

2.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
We report the synthesis of poly(l ‐lactide) and poly(hexyl isocyanate) macromonomers using bischloro‐η5‐cyclopentadienyl(bicyclo[2.2.1]‐hept‐5‐en‐2‐oxy) Titanium (IV), [CpTiCl2(O‐NBE)]. These macromonomers bearing a norbornene end group were polymerized towards brush copolymers employing Grubbs' first generation catalyst. Brush copolymers consisting of blocks with different side chains were synthesized. The polymers were characterized by Size Exclusion Chromatography, Nuclear Magnetic Resonance, and their thermal properties were investigated by Thermogravimetric Analysis, and Differential Scanning Calorimetry analysis. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3455–3465  相似文献   

4.
Well‐defined amphiphilic polymethylene‐b‐poly(ε‐caprolactone)‐b‐poly(acrylic acid) (PM‐b‐PCL‐b‐PAA) triblock copolymers were synthesized via a combination of polyhomologation, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). First, hydroxyl‐terminated polymethylenes (PM‐OH; Mn = 1100 g mol?1; Mw/Mn = 1.09) were produced by polyhomologation followed by oxidation. Then, the PM‐b‐PCL (Mn = 10,000 g mol?1; Mw/Mn = 1.27) diblock copolymers were synthesized via ROP of ε‐caprolactone using PM‐OH as macroinitiator and stannous octanoate (Sn(Oct)2) as a catalyst. Subsequently, the macroinitiator transformed from PM‐b‐PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBA) to construct PM‐b‐PCL‐b‐PtBA triblock copolymers (Mn = 11,000–14,000 g mol?1; Mw/Mn = 1.24–1.26). Finally, the PM‐b‐PCL‐b‐PAA triblock copolymers were obtained via the hydrolysis of the PtBA segment in PM‐b‐PCL‐b‐PtBA triblock copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Porous films of such triblock copolymers were fabricated by static breath‐figure method and observed by scanning electron microscope. The aggregates of PM‐b‐PCL‐b‐PAA triblock copolymer were studied by transmission electron microscope. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Three series of amorphous semicrystalline poly(styrene-b-ε-caprolactone)s have been synthesized with polystyrene blocks of 6000 (series A), 40000 (series B), and 70000 (series C) molecular weight, respectively. In these materials, the polymer miscibility evolves from a situation where a diffuse interphase involves the major part of the volume of the copolymer (series A) to a sharp phase separation as observed for copolymers with the longest PS block (series C). The crystallization of PCL blocks is mainly governed by the phase morphology. In copolymers of series A, the crystallization rate of PCL blocks is slowed down the more as the miscibility with PS increases, and ultimately the degree of crystallinity Xc decreases significantly. When phase separation is sharp, Xc changes dramatically at the phase inversion and decreases when PS forms the continuous phase. At the inversion Xc depends on the mean size of the PCL microdomains as compared with the thickness of the crystalline lamellae. The periodicity of the phase morphology as observed by TEM is influenced by the solvent used in casting films, whereas monolamellar monocrystals can be obtained by a self-seeding technique.  相似文献   

6.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(22) 5845 New multiblock copolymers derived from poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) were prepared with the coupling reaction between PLLA and PCL oligomers with ? NCO terminals. Fourier transform infrared (FTIR), 13C NMR, and differential scanning calorimetry (DSC) were used to characterize the copolymers and the results showed that PLLA and PCL were coupled by the reaction between ? NCO groups at the end of the PCL and ? OH (or ? COOH) groups at the end of the PLLA. DSC data indicated that the different compositions of PLLA and PCL had an influence on the thermal and crystallization properties including the glass‐transition temperature (Tg), melting temperature (TM), crystallizing temperature (Tc), melting enthalpy (ΔHm), crystallizing enthalpy (ΔHc), and crystallinity. Gel permeation chromatography (GPC) was employed to study the effect of the composition of PLLA and PCL and reaction time on the molecular weight and the molecular weight distribution of the copolymers. The weight‐average molecular weight of PLLA–PCL multiblock copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL, whereas that of the homopolymer of PLLA was only 14,000. A polarized optical microscope was used to observe the crystalline morphology of copolymers; the results showed that all polymers exhibited a spherulitic morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5045–5053, 2004  相似文献   

7.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Three heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH?N(C6F5)][(p‐XC6H4)N?C(But)CHC(CF3)O]TiCl2 ( 3a : X = F, 3b : X = Cl, 3c : X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the β‐enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. When the norbornene concentration in the feed is higher than 0.4 mol/L, the heteroligated catalysts mediated the living copolymerization of ethylene with norbornene to form narrow molecular weight distribution copolymers (Mw/Mn < 1.20), which suggested that chain termination or transfer reaction could be efficiently suppressed via the addition of norbornene into the reaction medium. Polymer yields, catalytic activity, molecular weight, and norbornene incorporation can be controlled within a wide range by the variation of the reaction parameters such as comonomer content in the feed, reaction time, and temperature. ©2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6072–6082, 2009  相似文献   

9.
Enzymatic degradation and polymerization using an enzyme were analyzed with respect to the establishment of a sustainable chemical recycling system for poly(ε‐caprolactone) (PCL) which is a typical biodegradable synthetic plastic. As the typical example, the enzymatic degradation of PCL having an Mn of 110 000 using lipase CA in toluene containing water at 70°C for 6 h afforded a unimodal oligomer having an Mn of about 1 000 quantitatively consisting of linear and cyclic oligomers. This was again polymerized by lipase CA in toluene under restricted water concentration to produce PCL having an Mn of greater than 70 000.  相似文献   

10.
Biodegradable and biocompatible PCL‐g‐PEG amphiphilic graft copolymers were prepared by combination of ROP and “click” chemistry via “graft onto” method under mild conditions. First, chloro‐functionalized poly(ε‐caprolactone) (PCL‐Cl) was synthesized by the ring‐opening copolymerization of ε‐caprolactone (CL) and α‐chloro‐ε‐caprolactone (CCL) employing scandium triflate as high‐efficient catalyst with near 100% monomer conversion. Second, the chloro groups of PCL‐Cl were quantitatively converted into azide form by NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction was carried out between azide‐functionalized PCL (PCL‐N3) and alkyne‐terminated poly(ethylene glycol) (A‐PEG) to give PCL‐g‐PEG amphiphilic graft copolymers. The composition and the graft architecture of the copolymers were characterized by 1H NMR, FTIR, and GPC analyses. These amphiphilic graft copolymers could self‐assemble into sphere‐like aggregates in aqueous solution with diverse diameters, which decreased with the increasing of grafting density. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Graft copolymers of poly(tulipalin A) (PT) and poly(DL‐lactide) (PDLLA) (PT‐g‐PDLLA) having various graft lengths and ratios were synthesized by free‐radical copolymerization of α‐methylene‐γ‐butyrolactone (MBL) and PDLLA macromonomers (HEMA‐PDLLA) terminated by 2‐hydroxyethyl methacrylate (HEMA)‐terminated. HEMA‐PDLLA were synthesized by ring opening polymerization (ROP) of DL‐lactide in the presence of HEMA. Both HEMA‐PDLLA and the copolymers were characterized by NMR spectroscopy and gel permeation chromatography (GPC). The thermal properties of the graft copolymers were found to depend on the graft length and the ratio. The copolymers consisting of PDLLA side chains of Mn = 500 Da showed a single Tg between Tgs of the two component polymers, suggesting a miscible state of PT and PDLLA. In contrast, the copolymers consisting of PDLLA side chains of Mn = 1100, 2000, and 7000 Da showed two isolated Tg, suggesting two segregated domains. The AFM phase images of the copolymers supported the single and phase‐separated morphologies for the former and latter systems, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The miscibility of poly(4-hydroxystyrene-co-methoxystyrene) (HSMS) and poly(ε-caprolactone) (PCL) was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). HSMS/PCL blends were found to be miscible in the whole composition range by detecting only a glass transition temperature (Tg), for each composition, which could be closely described by the Fox rule. The crystallinity of PCL in the blends was dependent on the Tg of the amorphous phase. The greater the HSMS content in the blends, the lower the crystallinity. The polymer–polymer interaction parameter, χ32, was calculated from melting point depression of PCL using the Nishi-Wang equation. The negative value of χ32 obtained for HSMS/PCL blends has been compared with the value of χ32 for poly(4-hydroxystyrene) (P4HS)/PCL blends. The specific nature, quantitative analysis, and average strength of the intermolecular interactions in HSMS/PCL and P4HS/PCL blends have been determined at room temperature and in the molten state by means of Fourier transform infrared spectroscopy (FTIR) measurements. The FTIR results have been in good correlation with the thermal behavior of the blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 95–104, 1998  相似文献   

13.
The ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) using lanthanide thiolate complexes [(CH3CsH4)2Sm(μ-SPh)(THF)]2 (1) and Sm(SPh)3(HMPA)3 (2) as initiators has been investigated for the first time. Both of 1 and 2 were found to be highly efficient initiators for the ROP of ε-CL. The poly(ε-caprolactone) (PCL) with molecular weight Mn up to 1.97 ×10^5 and relatively narrow molecular weight distributions (1.20〈MW/Mn〈 2.00) have been obtained in high yield in the temperature range of 35-65℃. According to the polymer yield, 2 showed much higher activity than 1. However, the number-average molecular weight of PCL obtained with 2 was much lower than with 1. The possible polymerization mechanism of the ε-CL polymerization has been proposed based on the results of the end group analysis of the ε-CL oligomer.  相似文献   

14.
Amphiphilic poly(N,N-dimethylamino-2-ethyl methacrylate)-g-poly(ε-caprolactone) graft copolymers (PDMAEMA-g-PCL) with various compositions and molecular weights were synthesised via a fully controlled three-step strategy. First, poly(ε-caprolactone) macromonomers (PCLMA) were prepared by ring-opening polymerization (ROP) of ε-caprolactone (CL) initiated by aluminum triisopropoxide (Al(OiPr)3), followed in a second step by quantitative esterification of PCL hydroxy end-groups with a methacrylic acid derivative. Finally, the controlled copolymerization of PCLMA and N,N-dimethylamino-2-ethyl methacrylate (DMAEMA) was carried out by atom transfer radical polymerisation (ATRP) in THF at 60 °C using CuBr ligated with 1,1,4,7,10,10, hexamethyl triethylenetetramine and ethyl 2-bromoisobutyrate as catalyst and initiator, respectively. Furthermore, PDMAEMA-g-PCL graft copolymers were reacted with methyl iodide to convert the pendant tertiary amines into quaternary ammonium iodides increasing accordingly their water solubility. Some preliminary experiments was further carried out by tensiometry and dynamic light scattering in order to shed so light on the tensioactive behaviour of these amphiphilic graft copolymers (with protonated amines or quaternary ammonium cations).  相似文献   

15.
The novel comb-type biodegradable graft copolymers based on ε-caprolactone and l-lactide were synthesized. Firstly, 2-oxepane-1,5-dione (OPD) was synthesized by the Baeyer-Villiger oxidation of 1,4-cyclohexanedione, and was subsequently copolymerized with ε-caprolactone (CL) to produce poly(2-oxepane-1,5-dione-co-ε-caprolactone) (POCL) catalyzed by stannous(II) 2-ethylhexanoate in toluene. Then, POCL was converted into poly(4-hydroxyl-ε-caprolactone-co-ε-caprolactone) (PHCL) using sodium borohydride as reductant. Finally, poly(4-hydroxyl-ε-caprolactone-co-ε-caprolactone)-g-poly(l-lactide) (PHCL-g-PLLA) were prepared successfully by bulk ring-opening polymerization of l-lactide using PHCL as a macro-initiator. All the copolymers have been characterized by 1H and 13C NMR, DSC, and GPC. Compared with the random copolymer of poly(CL-co-LA), the elongation is highly increased. And the thermal analysis showed that the crystallization rate of the PCL backbone in the graft copolymers was greatly reduced compared to the PCL homopolymer. The hydrolytic degradation of the copolymer was much faster in a phosphate buffer (pH = 7.4) at 37 °C, which is confirmed by the weight loss and change of intrinsic viscosity.  相似文献   

16.
Poly(1,1‐bis(ethoxycarbonyl)‐2‐vinyl cyclopropane (ECVP)‐graft‐dimethyl siloxane) copolymers were prepared using a macromonomer approach. Poly(dimethyl siloxane) (PDMS) macromonomers were prepared by living anionic polymerization of cyclosiloxanes followed by sequential chain‐end capping with allyl chloroformate. These macromonomers were then copolymerized with ECVP. MALDI‐ToF mass spectrometry and 1H NMR spectroscopy were used to show that the macromonomers had approximately 80% of the end groups functionalized with allyl carbonate groups. Gradient polymer elution chromatography showed that high yields of the graft copolymers were obtained, along with only small fractions of the PECVP and PDMS homopolymers. Differential scanning calorimetry showed that the low glass transition temperature (Tg) of the PDMS component could be maintained in the graft copolymers. However, the Tg was a function of polymer composition and the polymers produced had Tgs that ranged from ?50 to ?120 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Ring opening polymerization of ε‐caprolactone was realized in the presence of monomethoxy poly(ethylene glycol) with Mn = 1000 and 2000, using Zn(La)2 as catalyst. The resulting PCL‐PEG diblock copolymers with CL/EO repeat unit molar ratios from 0.2 to 3.0 were characterized by using DSC, WAXD, SEC, and 1H NMR. The crystal phase of PCL blocks exist in all polymers, and the crystallization ability of PCL blocks increases with CL/EO ratio. PEG blocks are able to crystallize for copolymers with CL/EO below 1.0 only. Melt crystallization results were analyzed with Avrami equation. The Averami exponent n is around 3.0 in most cases, in agreement with heterogeneous nucleation with three dimensional growth. The morphology of the crystals was observed by using POM. Rod‐like crystals were found to grow in 1, 3 or 2, 4 quadrants for samples with low molecular weights. In the case of a copolymer with Mn,PEG = 2000 and Mn,PCL = 800, PEG blocks could crystallize and grow on PCL crystals after PCL finished to form rod‐like crystals, leading to formation of poorly or well structured spherulites. The spherulite growth rate (G) was determined at different crystallization temperatures (Tc) ranging from 9 to 49 °C. All the copolymers present a steady G decrease with increasing crystallization temperature due to lower undercooling. On the other hand, increase of CL/EO ratio leads to increase of G in the same Tc range. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 286–293, 2010  相似文献   

18.
Norbornene macromonomers 2 and 3 bearing 10‐ and 20‐mers of lactide were synthesized by ring‐opening polymerization of lactide using 5‐norbornene‐2, 3‐exo‐exo‐dimethanol as an initiator and DBU as a catalyst. Macromonomers 2 and 3 were copolymerized with amino acid derived norbornene monomer 1 , using the Grubbs 2nd generation ruthenium catalyst. The random and block copolymers with Mn's ranging from 28,000 to 180,000 were obtained almost quantitatively where the Mn's of the block copolymers were higher than those of the random ones. Three‐dimensional macroporous structure polymers with average pore size of 10 µm could be found in poly( 1 ) and the block co‐polymer of 1 and 2 or 1 and 3 at the high ratio of 1 . Meanwhile, poly( 2 ) and poly( 3 ) along with block and random copolymers with low ratio of 1 exhibit much larger pores in the range of 50–300 µm. The porosity increased with increase in the unit ratio of 1 . The compressive strength of the porous structure of poly( 2 ) and poly( 3 ) was improved by the copolymerization with 1 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1660–1670  相似文献   

19.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

20.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号