首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A series of poly(styrene‐block‐ferrocenyldimethylsilane) copolymers (SF) with different relative molar masses of the blocks were prepared by sequential anionic polymerization. The bulk morphology of these polymers, studied by TEM and SAXS, showed well‐ordered lamellar and cylindrical domains as well as disordered micellar structures. Temperature‐dependent rheological measurements exhibited an order–disorder transition for SF 17/8 (the numbers refer to the relative molar masses in 103 g/mol) between 170 and 180°C, and an order–order transition for SF 9/19 between 190 and 200°C. The morphologies of binary blends of the diblocks with homopolymer were also investigated. In the blends the molar mass of the homopolymer was always less than the molar mass of the matching block. Ordered spheres on a bcc lattice and double‐gyroid morphology were observed for the blends. The double‐gyroid morphology was found only in F‐rich diblock/homopolymer systems. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1009–1021, 1999  相似文献   

2.
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003  相似文献   

3.
Well‐defined, core‐shell poly(methyl methacrylate) (PMMA)/casein nanoparticles, ranging from 80 to 130 nm in diameter, were prepared via a direct graft copolymerization of methyl methacrylate (MMA) from casein. The polymerization was induced by a small amount of alkyl hydroperoxide (ROOH) in water at 80 °C. Free radicals on the amino groups of casein and alkoxy radicals were generated concurrently, which initiated the graft copolymerization and homopolymerization of MMA, respectively. The presence of casein micelles promoted the emulsion polymerization of the monomer and provided particle stability. The conversion and grafting efficiency of the monomer strongly depended on the type of radical initiator, ROOH concentration, casein to MMA ratio, and reaction temperature. The graft copolymers and homopolymer of PMMA were isolated and characterized with Fourier transform infrared spectroscopy and differential scanning calorimetry. The molecular weight determination of both the grafted and homopolymer of PMMA suggested that the graft copolymerization and homopolymerization of MMA proceeded at a similar rate. The transmission electron microscopic image of the nanoparticles clearly showed a well‐defined core‐shell morphology, where PMMA cores were coated with casein shells. The casein shells were further confirmed with a zeta‐potential measurement. Finally, this synthetic method allowed us to prepare PMMA/casein nanoparticles with a solid content of up to 31%. Thus, our new process is commercially viable. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3346–3353, 2003  相似文献   

4.
A three‐arm star azo side‐chain liquid crystalline (LC) homopolymer, poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO), was synthesized by atom transfer radical polymerization (ATRP) method. The polymerization of 6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate proceeded in a controlled/“living” way. A series of three‐arm star LC block copolymers (PMMAZO‐b‐PMMA) were also synthesized. The polymers were characterized by 1H NMR, gel permeation chromatograph, and UV–vis spectra, respectively. The both polymers of PMMAZO and copolymers of PMMAZO‐b‐PMMA exhibited a smetic phase and a nematic phase. As concern to the PMMAZO, the glass‐transition temperature (Tg) and phase‐transition temperature from the smetic to nematic phase and from the nematic to isotropic phase increased with the increase of molecular weight (Mn(GPC)) of PMMAZO. The phase transition temperature of the block copolymers, PMMAZO‐b‐PMMA, with the same PMMA block was similar to that of PMMAZO. However, the Tg of the PMMAZO‐b‐PMMA decreased at low azo content and then increased with the increasing Mn(GPC) when azo content was above 61.3%. With illumination of linearly polarized Kr+ laser beam at modest intensities (35 mW/cm2), significant surface relief gratings formed on PMMAZO films with different molecular weights were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 777–789, 2008  相似文献   

5.
Optically active polymers bearing chiral units at the side chain were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in the presence of 2,2′‐azobisisobutyronitrile (AIBN)/benzyl dithiobenzoate (BDB), using a synthesized 6‐Op‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose (VBPG) as the monomer. The experimental results suggested that the polymerization of the monomer proceeded in a living fashion, providing chiral group polymers with narrow molecular weight distributions. The optically active nature of the obtained poly (6‐Op‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose) (PVBPG) was studied by investigating the dependence of specific rotation on the molecular weight of PVBPG and the concentration of PVBPG in tetrahydrofuran (THF). The results showed the specific rotation of PVBPG increased greatly with the decrease of the concentration of the PVBPG homopolymer. In addition, the effect of block copolymers of PVBPG on the optically active nature was also investigated by preparing a series of diblock copolymers of poly(methyl methacrylate) (PMMA)‐b‐PVBPG, polystyrene (PS)‐b‐PVBPG, and poly(methyl acrylate) (PMA)‐b‐PVBPG. It was found that both the homopolymer and the diblock copolymers possessed specific rotations. Finally, the ability of chiral recognition of the PVBPG homopolymer was investigated via an enantiomer‐selective adsorption experiment. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3788–3797, 2007  相似文献   

6.
Anionic polymerization of lauryl methacrylate (LMA) with 1,1‐diphenylhexyl lithium in tetrahydrofuran (THF) at ?40 °C resulted in a multimodal and broad molecular weight distribution (MWD) with poor initiator efficiency. In the presence of additives such as dilithium salt of triethylene glycol (G3Li2), LiCl, and LiClO4, the polymerization resulted in polymers with a narrow MWD (≤ 1.10). Diblock copolymers of methyl methacrylate (MMA) and LMA were synthesized by anionic polymerization using DPHLi as initiator in THF at ?40 °C with the sequential addition of monomers. The molecular weight distribution of the polymers was narrow and without homopolymer contamination when LMA was added to living PMMA chain ends. Diblock copolymers with broad/bimodal MWD were obtained with a reverse‐sequence monomer addition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 875–882, 2004  相似文献   

7.
1,3‐Phthaloyl bis‐9H‐carbazole (MPC) and 1,4‐phthaloyl bis‐9H‐carbazole (PPC) were synthesized by a Friedel‐Crafts reaction of carbazole with terephthaloyl chloride or isophthaloyl chloride. Homopolymers were obtained by a C? N coupling reaction with activated difluorides and copolymers were synthesized with 4,4′‐biphenol as a comonomer by a nucleophilic substitution reaction between these NH‐ and OH‐containing monomers and the activated difluoro monomers. The inherent viscosities of the polymers ranged from 0.35 to 1.03 dL/g. These polymers exhibited glass‐transition temperatures greater than 238 °C with the PPC‐containing homopolymer showing the highest value, 326.4 °C. The thermal stabilities indicated no significant weight loss below 450 °C and the temperatures of 5% weight loss ranged from 514.0 to 546.3 °C. The polymers showed reasonable solubility in organic solvents such as DMAC, DMSO, and NMP. UV absorption and fluorescence emission properties are presented. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4326–4331, 2009  相似文献   

8.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

9.
Hyperbranched poly(ether sulfone) was prepared in the presence of an oligomeric linear poly(ether sulfone) to generate multiblock hyperbranched‐linear (LxHB) copolymers. The LxHB copolymers were prepared in a two‐step, one‐pot synthesis by first polymerizing AB monomer to generate a linear block of a desired molecular weight followed by addition of the AB2 monomer in a large excess (19:1, AB2:AB) to generate the hyperbranched block. NMR integration analysis indicates that AB2:AB ratio is independent of the reaction time. Because the molecular weight still increases with reaction time, these results suggest that polymer growth continues after consumption of monomer by condensation into a multiblock architecture. The LxHB poly(ether sulfone)s have better thermal stability (10% mass loss > 343 vs. 317 °C) and lower Tg (200 vs. > 250 °C) than the hyperbranched homopolymer, higher Tg than the linear homopolymer (<154 °C), while little difference in the solubility character was observed between the two polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4785–4793, 2008  相似文献   

10.
Palladium‐catalyzed direct arylation polycondensation afforded a bithiazole‐based homopolymer and donor–acceptor (D–A)‐type copolymers where the bithiazole unit served as an acceptor unit. The results of polymerization strongly depended on the solubility of the polymers; long alkyl chain substituents were required for the formation of high‐molecular‐weight polymers in high yields owing to low solubility of the bithiazole‐based polymers. X‐ray diffraction studies revealed that the obtained polymers were highly crystalline. In particular, a well‐ordered lamellar structure was observed in the D–A‐type copolymer with flexible alkyl chains after thermal annealing, presumably owing to the combination of interchain interactions between the bithiazole units and the electrostatic D–A interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1396–1402  相似文献   

11.
Atom transfer radical polymerization (ATRP) has been employed in the polymerization of 2‐methoxyethyl acrylate (MEA) initiated by ethyl 2‐bromoisobutyrate in bulk or in toluene solution at 90–95 °C with the catalytic systems Cu(I)Br/PMDETA or HMTETA. Kinetics investigations revealed that ATRP of MEA proceeds in a controlled manner with a first‐order plot of monomer consumption, an almost linear molecular weight evolution and polydispersities < 1.29 in the entire conversion range. Well‐defined diblock copolymers with PMMA, PMEA‐b‐PMMA have been produced by use of both PMEA and PMMA macroinitiators, however, for the latter the controlled conditions were somehow difficult to maintain. The amphiphilic behavior of the diblock copolymers lead to phase separation resulting in two glass transition temperatures as detected by DSC. Contact angle (Θ) investigations with water on PMEA, PMMA, and diblock copolymers surfaces reveal PMEA as an intermediate hydrophilic with Θ ~ 50°, whereas PMMA and the diblock copolymers all fall in the hydrophobic region with Θ > 70°. © 2006 Wiley Periodicals, Inc. J Polym Sci Part Polym Chem45: 333–340, 2007  相似文献   

12.
1,4‐Pentadien‐3‐one‐1,5‐bis(p‐hydroxyphenyl) (PBHP) was prepared by reacting p‐hydroxybenzaldehyde and acetone in the presence of an acid catalyst. 1,4‐Pentadiene‐3‐one‐1‐p‐hydroxyphenyl‐5‐p‐phenyl methacrylate (PHPPMA) monomer was prepared by reacting PBHP dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine. A free‐radical solution polymerization technique was used for synthesizing homo‐ and copolymers of different feed compositions of PHPPMA and ethyl acrylate (EA) in EMK as a solvent with benzoyl peroxide as a free‐radical initiator at 70 ± 1 °C. All the polymers were characterized with IR and 1H NMR techniques. The compositions of the copolymers were determined with the 1H NMR technique. The copolymer reactivity ratios were evolved with Kelen–Tudos (EA = 1.25 and PHPPMA = 0.09) and extended Kelen–Tudos (EA = 1.30 and PHPPMA = 0.09) methods. Q (0.48) and e (1.68) values for the new monomer (PHPPMA) were calculated with the Alfrey–Price method. UV absorption spectra for poly(PHPPMA) showed two absorption bands at 302 and 315 nm. The photocrosslinking properties of the polymer samples were examined with the solvent method. Thermal analyses of the polymers were performed with the thermogravimetric‐differential thermogravimetric technique. First, the decomposition temperatures started for poly(PHPPMA), copoly(EA‐PHPPMA) (62:38), and copoly(EA‐PHPPMA) (41:59) were at 350, 410, and 417 °C, respectively. A gel permeation chromatographic method was used for determining the polymer molecular weights (weight‐average molecular weight: 2.67 × 104 and number‐average molecular weight: 1.41 × 104) and polydispersity index (1.89). The solubility of the monomer and the copolymers occurred at 30 °C with solvents having different polarities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1632–1640, 2003  相似文献   

13.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

14.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl‐5‐fluorouracil (ETFU), was synthesized by the reaction of exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidoethanoyl chloride (ETPC) and 5‐fluorouracil (5‐FU). The homopolymer of ETFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared via photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopy and elemental analysis. The ETFU contents in poly(ETFU‐co‐AA) and poly(ETFU‐co‐VAc) were 26 mol % and 26 mol %, respectively. The number‐average molecular weights of the polymers, as determined by gel permeation chromatography, ranged from 5600 to 17,000. The in vitro cytotoxicities of 5‐FU and the synthesized samples against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines increased in the following order: ETFU > 5‐FU > poly(ETFU‐co‐AA) > poly(ETFU) > poly(ETFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all doses tested. The inhibitions of the samples for SV40 DNA replication and antiangiogenesis were much greater than the inhibition of the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4272–4281, 2000  相似文献   

15.
The anionic polymerization of 2‐vinylnaphthalene (2VN) has been studied in tetrahydrofuran (THF) at ?78 °C and in toluene at 40 °C. 2VN polymerization in THF, toluene, or toluene/THF (99:1 v/v) initiated by sec‐butyllithium (sBuLi) indicates living characteristics, affording polymers with predefined molecular weights and narrow molecular weight distributions. Block copolymers of 2VN with methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) have been synthesized successfully by sequential monomer addition in THF at ?78 °C initiated by an adduct of sBuLi–LiCl. The crossover propagation from poly(2‐vinylnaphthyllithium) (P2VN) macroanions to MMA and tBA appears to be living, the molecular weight and composition can be predicted, and the molecular weight distribution of the resulting block copolymer is narrow (weight‐average molecular/number‐average molecular weight < 1.3). Block copolymers with different chain lengths for the P2VN segment can easily be prepared by variations in the monomer ratios. The block copolymerization of 2VN with hexamethylcyclotrisiloxane also results in a block copolymer of P2VN and poly(dimethylsiloxane) (PDMS) contaminated with a significant amount of homo‐PDMS. Poly(2VN‐b‐nBA) (where nBA is n‐butyl acrylate) has also been prepared by the transesterification reaction of the poly(2VN‐b‐tBA) block copolymer. Size exclusion chromatography, Fourier transform infrared, and 1H NMR measurements indicate that the resulting polymers have the required architecture. The corresponding amphiphilic block copolymer of poly(2VN‐b‐AA) (where AA is acrylic acid) has been synthesized by acidic hydrolysis of the ester group of tert‐butyl from the poly(2VN‐b‐tBA) copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4387–4397, 2002  相似文献   

16.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

17.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   

18.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

19.
A novel vinyl‐hydantoin monomer, 3‐(4′‐vinylbenzyl)‐5,5‐dimethylhydantoin, was synthesized in a good yield and was fully characterized with Fourier transform infrared (FTIR) and 1H NMR spectra. Its homopolymer and copolymers with several common acrylic and vinyl monomers, such as vinyl acetate, acrylonitrile, and methyl methacrylate, were readily prepared under mild conditions. The polymers were characterized with FTIR and 1H NMR, and their thermal properties were analyzed with differential scanning calorimetry studies. The halogenated products of the corresponding copolymers exhibited potent antibacterial properties against Escherichia coli, and the antibacterial properties were durable and regenerable. The structure–property relationships of the polymers were further discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3348–3355, 2001  相似文献   

20.
Hydrolysis of 4‐acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4‐acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4‐dioxane, afforded the corresponding narrow dispersed materials with phenolic groups which were substantially free from crosslinkages. Gel permeation chromatographic (GPC) analysis of these polymers revealed different extents of molecular weight distribution (MWD) broadening for the hydrolysis products for the different structures. On the other hand, by NaOH catalyzed deprotection, the 4‐acetoxystyrene polymers including triblock copolymer poly(4‐acetoxystyrene‐b‐isobutylene‐b‐4‐acetoxystyrene) suffered from some degrees of coupling or even gelation, except for poly(styrene‐b‐4‐acetoxystyrene‐b‐styrene) which also by this method could be conveniently converted to its phenolic product. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 627–633, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号