首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spontaneous copolymerization of 4-vinylpyridine (4-VP) complexed with three different zinc salts (chloride, acetate, and triflate) with various electron-rich vinyl monomers (p-methoxystyrene, MeOSt; p-methylstyrene, MeSt; α-methylstyrene, α-MeSt; p-tert-butylstyrene, BuSt; styrene, St) was investigated in methanol at 75°C. Increasing the zinc salt concentration or the nucleophilicity of the electron-rich monomer increased the copolymer yields. All obtained copolymers are characterized by high molecular weight (105) and broad molecular weight distribution. Both 1H-NMR and elemental analyses confirmed the almost 1 : 1 copolymer structure. Changing the anion of the zinc salt does not have a considerable effect either on the copolymerization rate or on the molecular weight. The proposed mechanism exhibits the formation of a σ-bond between the β-carbons of the two donor–acceptor monomers. This creates the 1,4-tetramethylene biradical intermediate which can initiate the copolymerization reaction. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2787–2792, 1997  相似文献   

2.
The time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) positive and negative ion spectra of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) were analyzed using density functional theory calculations. Most of the ions from these structural isomers shared the same accurate mass, but had different relative abundance. This could be attributed to the fact that from a thermodynamics perspective, the disparity in the molecular structures can affect the ion stability if we assume that they shared the same mechanistic pathway of formation with similar reaction kinetics. The molecular structures of these ions were assigned, and their stability was evaluated based on calculations using the Kohn‐Sham density functional theory with Becke's 3‐parameter Lee‐Yang‐Parr exchange‐correlation functional and a correlation‐consistent, polarized, valence, double‐zeta basis set for cations and the same basis set with a triple‐zeta for anions. The computational results agreed with the experimental observations that the nitrogen‐containing cations such as C5H4N+ (m/z = 78), C8H7N (m/z = 117), C8H8N+ (m/z = 118), C9H8N+ (m/z = 130), C13H11N2+ (m/z = 195), C14H13N2+ (m/z = 209), C15H15N2+ (m/z = 223), and C21H22N3+ (m/z = 316) ions were more favorably formed in P2VP than in P4VP due to higher ion stability because the calculated total energies of these cations were more negative when the nitrogen was situated at the ortho position. Nevertheless, our assumption was invalid in the formation of positive ions such as C6H7N+˙ (m/z = 93) and C8H10N+ (m/z = 120). Their formation did not necessarily depend on the ion stability. Instead, the transition state chemistry and the matrix effect both played a role. In the negative ion spectra, we found that nitrogen‐containing anions such as C5H4N? (m/z = 78), C6H6N? (m/z = 92), C7H6N? (m/z = 104), C8H6N? (m/z = 116), C9H10N? (m/z = 132), C13H11N2? (m/z = 195), and C14H13N2? (m/z = 209) ions were more favorably formed in P4VP, which is in line with our computational results without exception. We speculate that whether anions would form from P2VP and P4VP is more dependent on the stability of the ions.  相似文献   

3.
The application of polymeric films as alarms for explosive materials is a critical issue these days as mandated by homeland security requirements. Amongst the multiple advantageous points of applying polymer films in this area is the fact that they are cheap material, so they can be applied on a broad scale for low cost. The basic idea of the current work is based on the fact that common explosives are electron deficient because of the existence of the nitro‐groups in their chemical structures, and this causes their high affinities towards electron rich materials to form charge‐transfer complex. Our endeavor is to trace any charge‐transfer complex formation, which would definitely cause a recognizable change in their physical properties. These changes in the polymers' physical properties could be utilized as alerts for the existence of explosive materials, especially if such changes could be incorporated into sophisticated electronic circuits that would give strong for traces of explosives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The (controlled) free‐radical copolymerization of maleic anhydride and styrene or derivatives thereof is often thought to provide nearly perfect alternating copolymers. Here, the RAFT copolymerization of electron‐rich styrene derivatives with maleic anhydride is reported. This copolymerization shows distinct penultimate effects, resulting in polymers with increased incorporation of styrene monomers, that is, where a tendency toward periodic (S‐S‐MA) copolymers exists. This work could be a first step towards periodic copolymers based on maleic anhydride and styrene derivatives. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2932–2939  相似文献   

5.
Poly(4‐vinylpyridine) was determined to possess conductivity in the experiment. In order to understand properties of the polymer, a series of 4‐vinylpyridine oligomers were designed. The structures of these oligomers were optimized using density function theory (DFT) at B3LYP/6‐31G(d) level. The energy gaps and thermal stabilities of the oligomers were decreased when the chain lengths were increased. These properties were also decreased owing to the protonation of the pyridine ring. The holes were easily injected into the oligomers in the presence of hydrochloride. The electrons were conducted in the side chain composed of the pyridine rings rather than the main chain owing to the saturation of the main chain. The 13C nuclear magnetic resonance (NMR) spectra and nucleus independent chemical shifts (NICS) of these compounds were calculated at B3LYP/6‐31G(d) level. The chemical shifts of the carbon atoms connected with the nitrogen atoms in the protonated pyridines were moved upfield in comparison with those of the pyridines. The addition of hydrochloride on the pyridine ring in the oligomers led to the increase of the aromaticities, namely the aromaticities of the oligomers were obviously improved when the pyridine rings were protonated.  相似文献   

6.
Summary: Octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OpePOSS) was used as the crosslinking agent to prepare the nanocrosslinked poly(4‐vinylpyridine) (P4VP) with POSS content up to 55.2 wt.‐%. The formation of the crosslinked structure is ascribed to the macromolecular reaction between pyridine rings of P4VP and epoxide groups of OpePOSS. The POSS‐crosslinked P4VP displayed enhanced glass transition temperatures (Tgs) and an improved thermal stability in terms of the results of thermal analysis.

Crosslinking of poly(4‐vinylpyridine) with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane.  相似文献   


7.
The immobilization of molybdenum (Mo) compounds on poly(4‐vinylpyridine) (P4VP) microspheres for catalytic epoxidation was reported. P4VP‐supported Mo compounds were highly efficient and selective for the epoxidation of cis‐cyclooctene using hydrogen peroxide (H2O2) as oxygen source. When ethanol was used as solvents, outstanding catalytic activity and selectivity were observed for Mo‐containing catalysts in the epoxidation of cis‐cyclooctene. A completely green epoxidation system based on H2O2 and cleaner solvent has been achieved, and the heterogenized Mo catalyst can be recovered for five times without loss of its activity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 558–562, 2010  相似文献   

8.
We successfully demonstrated microliter (μL) volume determination of Mercury (Hg) using an in‐built screen‐printed three electrodes containing partially crosslinked poly(4‐vinlylpyridine) (designated as pcPVP) modified carbon‐working, carbon‐counter, and Ag+‐quasireference electrodes (SPE/pcPVP) in a pH 4 acetate buffer solution with 2 M KCl by using the square wave anodic stripping voltammetric (SWASV) technique. Instrumental and solution phase conditions were systematically optimized. Experiments were carried out by simply placing a 500 μL‐droplet of Hg containing real sample mixed with the base electrolyte on the SPE/pcPVP surface. The SPE/Ag+ quasi‐reference system shifted the Hg‐SWASV detection potential ca. 250 mV positive, but the quantitative current values were appreciably similar to that of a standard Ag/AgCl reference electrode. Under optimal condition, the calibration graph is linear in the window of 100–1000 ppb of the Hg droplet system with a detection limit of 69.5 ppb (S/N=3). Finally real sample assays were demonstrated for prohibited cosmetic Hg containing skin‐lightening agents in parallel with ICP‐OES measurements.  相似文献   

9.
Organotin phenoxides, which are distinctly more active than the corresponding phenols, react at room temperature with bis(2,2,2‐trichloroethyl) azodicarboxylate to produce para‐substituted phenolic hydrazides in high yields. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Effects of a strong‐interacting amorphous polymer, poly(4‐vinyl phenol) (PVPh), and an alkali metal salt, lithium perchlorate (LiClO4), on the amorphous and crystalline domains in poly(ethylene oxide) (PEO) were probed by differential scanning calorimetry (DSC), optical microscopy (OM), and Fourier transform infrared spectroscopy (FTIR). Addition of lithium perchlorate (LiClO4, up to 10% of the total mass) led to enhanced Tg's, but did not disturb the miscibility state in the amorphous phase of PEO/PVPh blends, where the salt in the form of lithium cation and ClO anion was well dispersed in the matrix. Competitive interactions between PEO, PVPh, and Li+ and ClO ions were evidenced by the elevation of glass transition temperatures and shifting of IR peaks observed for LiClO4‐doped PEO/PVPh blend system. However, the doping distinctly influenced the crystalline domains of LiClO4‐doped PEO or LiClO4‐doped PEO/PVPh blend system. LiClO4 doping in PEO exerted significant retardation on PEO crystal growth. The growth rates for LiClO4‐doped PEO were order‐of‐magnitude slower than those for the salt‐free neat PEO. Dramatic changes in spherulitic patterns were also seen, in that feather‐like dendritic spherulites are resulted, indicating strong interactions. Introduction of both miscible amorphous PVPh polymer and LiClO4 salt in PEO can potentially be a new approach of designing PEO as matrix materials for electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3357–3368, 2006  相似文献   

11.
The radical copolymerization of chlorotrifluoroethylene (CTFE) with 3,3,4,4‐tetrafluoro‐4‐bromobut‐1‐ene (BTFB) initiated by tert‐butylperoxypivalate is presented. The microstructures of the obtained copolymers are determined by means of NMR spectroscopies and elemental analysis and show that random copolymers were obtained. A wide range of poly(CTFE‐co‐BTFB) copolymers is synthesized, containing from 17 to 89 mol % of CTFE. In all the cases, CTFE is the less reactive of both comonomers. Td10% values, ranging from 163 up to 359 °C, are dependent on the BTFB content. These variations of thermal property are attributed to the increase in the number of C‐H and C‐Br bonds breakdown when the BTFB molar percentage in the copolymer is higher. Tg values range from 19 to 39 °C and a decreasing trend is observed when increasing the amount of BTFB in the copolymer. This observation arises from the higher flexibility of the copolymer when increasing the number of fluorobrominated lateral chains. These original fluoropolymers bearing reactive pendant bromo groups are suitable candidates for various applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1714–1720  相似文献   

12.
The radical copolymerization of vinylidene fluoride (VDF) with 4‐bromo‐1,1,2‐trifluorobut‐1‐ene (C4Br) was examined. This bromofluorinated alkene was synthesized in three steps, which started with the addition of bromine to chlorotrifluoroethylene. In contrast to the ethylenation of 1,1‐difluoro‐1,2‐dibromochlorethane, which failed, that of 2‐chloro‐1,1,2‐trifluoro‐1,2‐dibromoethane was optimized and led to 2‐chloro‐1,1,2‐trifluoro‐1,4‐dibromobutane. The kinetics of the copolymerization of VDF with this brominated monomer initiated by t‐butyl peroxypivalate led to an assessment of the reactivity ratios, rVDF = 0.96 ± 0.67 and rC4Br = 0.09 ± 0.63, at 50 °C. The suspension copolymerization was also carried out, and the chemical modifications of the resulting bromo‐containing poly(vinylidene fluoride)s were attempted and consisted mainly of elimination or nucleophilic substitution of the bromine. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 917–935, 2005  相似文献   

13.
Surface‐initiated atom‐transfer radical polymerization (ATRP) of 4‐vinylpyridine (4VP) on a pretreated Si(100) surface was carried out. The composition and topography of the Si(100) surface modified by poly(4‐vinylpyridine) (P4VP) were characterized by XPS and atomic force microscopy (AFM), respectively. The P4VP layer on the Si(100) surface was used not only as chemisorption sites for the palladium complexes without prior sensitization by SnCl2 solution during the electroless plating, but also as an adhesion promotion layer for the electrolessly deposited copper. The electrolessly deposited copper on the Si–P4VP surface exhibited a 180° peel adhesion strength above 6 N/cm. The adhesion strength was much higher than that of the electrolessly deposited copper to the pristine silicon surface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Quaternized poly(4‐vinylpyridine) (QPVP) has been incorporated as an anion exchanger into sol‐gel derived silica films for use in a spectroelectrochemical sensor. The preparation, characteristics and performance of these films are described. The films, which are spin‐coated onto the surface of a planar optically transparent electrode, are optically transparent and uniform. Scanning electron microscopy and spectroscopic ellipsometry have been used to examine film structure, thickness and optical properties. These films have been shown both spectroscopically and electrochemically to preconcentrate ferrocyanide, a model analyte for the sensor. The films can be regenerated for multiple measurements by exposure to 1 M KNO3. The effects of polymer molecular weight and storage conditions on film performance are described. The overall response of this film is comparable to the poly(dimethyldiallylammonium chloride)‐silica films previously used for this sensor.  相似文献   

15.
Bulk homopolymerization and copolymerization of 1‐hexene (H) with polar monomers including butyl acrylate (B) and methyl methacrylate (M) in the presence of 1,4‐bis (2,6‐diisopropylphenyl) acenaphthene diimine nickel (II) dibromide catalyst were investigated. Two cocatalysts, including diethyl aluminium chloride (DEAC) and ethyl aluminium sesqui chloride (EASC), were used to activate the catalyst at ambient temperature. In both the homopolymerization and copolymerization of 1‐hexene with polar monomers, the catalyst activity resulted from EASC as cocatalyst was higher than that resulted from DEAC. 1HNMR analysis was used in order to determine incorporation level of polar monomers and branching density of the synthesized polymers. A highest incorporation level of 13.3% mol was obtained using monomer B in the presence of the cocatalyst EASC. In addition, the influence of polar monomers on molecular weight and molecular weight distribution (PDI) was studied for both the homo‐ and co‐polymerizations of 1‐hexene in the presence of various cocatalysts. A higher molecular weight and narrower PDI were obtained by using the DEAC cocatalyst compared to the EASC cocatalyst. Glass transition temperature (Tg) and melting point (Tm) of the synthesized polymers were found to be dependent on the cocatalyst type and comonomer incorporation level. The addition of dichloromethane solvent into reaction medium showed a positive effect on comonomer incorporation which could not be seen in bulk polymerization. However, the presence of dichloromethane led to decrease the catalyst activity and molecular weight of the polymers.  相似文献   

16.
Summary: We report the multiple morphologies and their transformation of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in low‐alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre‐shaped large compound micelles, and to sphere‐shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.

Aggregates of PS‐P4VP formed in butanol by quenching from 110 °C to room temperature.  相似文献   


17.
An efficient PdCl2(PCy3)2‐catalyzed cross‐coupling reaction of 2‐vinylpyridine with aryl chlorides to afford trans ‐2‐styrylpyridines with a variety of functional groups on the benzene ring is described. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A series of alternating copolymers of electron‐rich arylamine and electron‐deficient 2,1,3‐benzothiadiazole (BT), PV‐BT, DP‐BT, and TP‐BT, were synthesized by Heck coupling reaction. UV–vis absorption and fluorescence spectra show that the copolymerization of electron‐rich diphenylamine (DP), triphenylamine (TP), MEH‐PV (PV), and electron‐deficient BT results in low‐bandgap conjugated polymers. Within the three copolymers of PV‐BT, DP‐BT, and TP‐BT, TP‐BT possesses the highest hole mobility of 4.68 × 10? 5 cm2/V, as determined from the space charge limited current (SCLC) model. The bulk heterojunction‐typed polymer solar cells (PSCs) were fabricated with the blend of the copolymers and PCBM as the photosensitive layer. The power conversion efficiencies (PCE) of the PSCs based on PV‐BT, DP‐BT, and TP‐BT reached 0.26%, 0.39%, and 0.52%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The results indicate that TP‐BT is a promising photovoltaic polymer for PSCs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3861–3871, 2007  相似文献   

19.
Controlled radical polymerization of 4‐vinylpyridine (4VP) was achieved in a 50 vol % 1‐methyl‐2‐pyrrolidone/water solvent mixture using a 2,2′‐azobis(2,4‐dimethylpentanitrile) initiator and a CuCl2/2,2′‐bipyridine catalyst–ligand complex, for an initial monomer concentration of [M]0 = 2.32–3.24 M and a temperature range of 70–80 °C. Radical polymerization control was achieved at catalyst to initiator molar ratios in the range of 1.3:1 to 1.6:1. First‐order kinetics of the rate of polymerization (with respect to the monomer), linear increase of the number–average degree of polymerization with monomer conversion, and a polydispersity index in the range of 1.29–1.35 were indicative of controlled radical polymerization. The highest number–average degree of polymerization of 247 (number–average molecular weight = 26,000 g/mol) was achieved at a temperature of 70 °C, [M]0 = 3.24 M and a catalyst to initiator molar ratio of 1.6:1. Over the temperature range studied (70–80 °C), the initiator efficiency increased from 50 to 64% whereas the apparent polymerization rate constant increased by about 60%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5748–5758, 2007  相似文献   

20.
A living anionic alternating copolymerization of ethylphenylketene (EPK) with 4‐methoxybenzaldehyde (MBA) was achieved. When n‐butyllithium was added to a mixture of EPK and MBA in tetrahydrofuran at ?40 °C in the presence of an excess amount of lithium chloride, the copolymerization of these monomers proceeded via complete 1:1 alternating manner to afford the polymer with a narrow molecular weight distribution. A linear relationship was observed between the molecular weight and the monomer/initiator ratio, keeping a narrow molecular weight distribution. The structure of the obtained polymer was determined to be a polyester by IR spectroscopy together with the reductive degradation of the polymer by lithium aluminum hydride, which quantitatively afforded the corresponding diol to the repeating unit of the expected polyester structure. Both conversions of EPK and MBA agreed to a first‐order kinetic equation with linear evolution between the molecular weight and conversion. These observations along with the successful results in two‐stage polymerization indicate that the present copolymerization proceeded through a living mechanism. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2078–2084, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号