首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and highly efficient interface to couple capillary electrophoresis with inductively coupled plasma mass spectrometry by a microflow polyfluoroalkoxy nebulizer and a quadruple ion deflector was developed in this study. By using this interface, six arsenic species, including arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine, were baseline‐separated and determined in a single run within 11 min under the optimized separation conditions. The instrumental detection limit was in the range of 0.02–0.06 ng/mL for the six arsenic compounds. Repeatability expressed as the relative standard deviation (n = 5) of both migration time and peak area were better than 2.5 and 4.3% for six arsenic compounds. The proposed method, combined with a closed‐vessel microwave‐assisted extraction procedure, was successfully applied for the determination of arsenic species in the Solanum Lyratum Thunb samples from Anhui province in China with the relative standard deviations (n = 5) ≤4%, method detection limits of 0.2–0.6 ng As/g and a recovery of 98–104%. The experimental results showed that arsenobetaine was the main speciation of arsenic in the Solanum Lyratum Thunb samples from different provinces in China, with a concentration of 0.42–1.30 μg/g.  相似文献   

2.
Plants and soil collected above an ore vein in Gasen (Austria) were investigated for total arsenic concentrations by inductively coupled plasma mass spectrometry (ICP‐MS). Total arsenic concentrations in all samples were higher than those usually found at non‐contaminated sites. The arsenic concentration in the soil ranged from ∼700 to ∼4000 mg kg−1 dry mass. Arsenic concentrations in plant samples ranged from ∼0.5 to 6 mg kg−1 dry mass and varied with plant species and plant part. Examination of plant and soil extracts by high‐performance liquid chromatography–ICP‐MS revealed that only small amounts of arsenic (<1%) could be extracted from the soil and the main part of the extractable arsenic from soil was inorganic arsenic, dominated by arsenate. Trimethylarsine oxide and arsenobetaine were also detected as minor compounds in soil. The extracts of the plants (Trifolium pratense, Dactylis glomerata, and Plantago lanceolata) contained arsenate, arsenite, methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, the tetramethylarsonium ion, arsenobetaine, and arsenocholine (2.5–12% extraction efficiency). The arsenic compounds and their concentrations differed with plant species. The extracts of D. glomerata and P. lanceolata contained mainly inorganic arsenic compounds typical of most other plants. T. pratense, on the other hand, contained mainly organic arsenicals and the major compound was methylarsonic acid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Levels of total arsenic and arsenic species were determined in fungi collected from Yellowknife, NWT, Canada, an area that has been affected by past mining activities and elevated arsenic levels. Lichens (belonging to Cladonia and Cladina genera), as well as the mushrooms Coprinus comatus, Paxillus involutus, Psathyrella candolleana and Leccinum scabrum, were studied for the first time. Most of the fungi contained elevated arsenic levels with respect to data found in the literature for background levels. Minor amounts of arsenobetaine were found in all lichen samples. The major water‐soluble arsenic species in the fungi were inorganic arsenic for lichens and Psathyrella candolleana, arsenobetaine for Lycoperdon pyriforme and Coprinus comatus, and dimethylarsenate for Paxillus involutus and Leccinum scabrum. A large proportion of water‐soluble arsenic in Paxillus involutus occurred as an unknown compound, which did not co‐chromatograph with any of the available standard arsenic compounds. Low proportions of water‐soluble arsenic species (made evident by low extraction efficiencies) were observed in the majority of fungi studied. Arsenic that is not extracted may be bound to lipids, cell components or proteins, or might exist on the surface of the fungus as minerals. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Batch experiments were conducted on aqueous solutions containing arsenite, arsenobetaine, methylarsonic acid or phenylarsonic acid in contact with natural zeolites to examine their interaction. The concentration of the arsenic species in the liquid phase at equilibrium before and after contact was measured by means of liquid chromatography coupled with inductively coupled plasma mass spectrometry detection. Clinoptilolites completely removed arsenobetaine from the solution and the resulting amounts of dimethylarsinic acid were detected. The methylarsonic acid maximum concentration diminution was reached at a mass—to volume V value of m/V = 0.2. Phenylarsonic acid solution decreased its concentration 75% after treatment with clinoptilolites. Untreated mordenites in contact with arsenite solutions led to the formation of arsenate, whereas acid‐washed mordenites practically removed arsenobetaine and were less effective for methylarsonic acid. To show the incompatibility of molecular dimensions with the zeolite windows, the molecular parameters of surface area, molecular volume, molecular length, and the width and depth of arsenite, arsenate and a series of ten organic arsenic compounds were calculated. Since sorption onto the external zeolite surface rather than a sieve process defined the interaction, an acid‐catalysed reaction mechanism is proposed to explain the transformation results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Blue mussels (Mytilus edulis) were exposed to 100 μg As dm?3 in the form of arsenite, arsenate, methylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium iodide or dimethyl-(2-hydroxyethyl)arsine oxide in seawater for 10 days. The seawater was renewed and spiked with the arsenic compounds daily. Analyses of water samples taken 24 h after spiking showed that arsenobetaine and arsenocholine had been converted to trimethylarsine oxide, whereas trimethylarsine oxide and tetramethylarsonium iodide were unchanged. Arsenobetaine was accumulated by mussels most efficienty, followed in efficiency by arsenocholine and tetramethylarsonium iodide. None of the other arsenic compounds was significantly accumulated by the mussels. Extraction of mussel tissues with methanol revealed that control mussels contained arsenobetaine, a dimethyl-(5-ribosyl)arsine oxide and an additional arsenic compound, possibly dimethylarsinic acid. Mussels exposed to arsenobetaine contained almost all their experimentally accumulated arsenic as arsenobetaine, and mussels exposed to tetramethylarsonium iodide contained it as the tetramethylarsonium compound. Mussels exposed to arsenocholine had arsenobetaine as the major arsenic compound and glycerylphosphorylarsenocholine as a minor arsenic compound in their tissues. The results show that arsenobetaine and arsenocholine are efficiently accumulated from seawater by blue mussels and that in both cases the accumulated arsenic is present in the tissues as arsenobetaine. Consequently arsenobetaine and/or arsenocholine present at very low concentrations in seawater may be responsible for the presence of arsenobetaine in M. edulis and probably also among other marine animals. The quantity of arsenobetaine accumulated by the mussels decreases with increasing concentrations of betaine. HPLC-ICP-MS was found to be very powerful for the investigation of the metabolism of arsenic compounds in biological systems.  相似文献   

6.
Arsenic speciation analysis in marine samples was performed using ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP‐MS) detection. The separation of eight arsenic species, viz. arsenite, monomethyl arsonic acid, dimethylarsinic acid, arsenate, arsenobetaine, tetramethylarsine oxide, arsenocholine and tetramethylarsonium ion was achieved on a Dionex AS4A (weaker anion exchange column) by using a nitric acid pH gradient eluent (pH 3.3 to 1.3). The entire separation was accomplished in 12 min. The detection limits for the eight arsenic species by IC–ICP‐MS were in the range 0.03–1.6 µ g l?1, based on 3σ of the blank response (n = 6). The repeatability and day‐to‐day reproducibility were calculated to be less than 10% (residual standard deviation) for all eight species. The method was validated by analyzing a certified reference material (DORM‐2, dogfish muscle) and then successfully applied to several marine samples, e.g. oyster, fish muscle, shrimp and marine algae. The low power microwave digestion was employed for the extraction of arsenic from seafood products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Marine organisms, including phyto‐ and zoo‐plankton, macroalgae, and animals, concentrate arsenic in various organic forms. However, the distribution and fate of these organoarsenicals in marine environments remains unclear. In this study, the distribution of organoarsenicals in coastal marine sediment in Otsuchi Bay, Japan, has been determined. Methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, arsenocholine and other unidentified arsenic species were detected in marine sediment by high‐performance liquid chromatography–inductively coupled plasma mass spectrometry analysis of methanol–water extracts. Arsenobetaine was the dominant organoarsenical at four of the seven stations where tests were carried out, and unidentified species or dimethylarsinic acid dominated at the other stations. Total organoarsenicals (as arsenic) in the surface sediment amounted to 10.6–47.5 µg kg?1 dry sediment. Core analysis revealed that concentrations of organoarsenicals decreased with depth, and they are considered to be degraded within 60 years of deposition. These results show that organoarsenicals formed by marine organisms are delivered to the sediment and can be degraded within several decades. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
In this study the accumulation and distribution of arsenic compounds in marine fish species in relation to their trophic position was investigated. Arsenic compounds were measured in eight tissues of mullet Mugil cephalus (detritivore), luderick Girella tricuspidata (herbivore) and tailor Pomatomus saltatrix (carnivore) by high performance liquid chromatography–inductively coupled plasma‐mass spectrometry. The majority of arsenic in tailor tissues, the pelagic carnivore, was present as arsenobetaine (86–94%). Mullet and luderick also contained high amounts of arsenobetaine in all tissues (62–98% and 59–100% respectively) except the intestines (20% and 24% respectively). Appreciable amounts of dimethylarsinic acid (1–39%), arsenate (2–38%), arsenite (1–9%) and trimethylarsine oxide (2–8%) were identified in mullet and luderick tissues. Small amounts of arsenocholine (1–3%), methylarsonic acid (1–3%) and tetramethylarsonium ion (1–2%) were found in some tissues of all three species. A phosphate arsenoriboside was identified in mullet intestine (4%) and from all tissues of luderick (1–6%) except muscle. Pelagic carnivore fish species are exposed mainly to arsenobetaine through their diet and accumulate the majority of arsenic in tissues as this compound. Detritivore and herbivore fish species also accumulate arsenobetaine from their diet, with quantities of other inorganic and organic arsenic compounds. These compounds may result from ingestion of food and sediment, degradation products (e.g. arsenobetaine to trimethylarsine oxide; arsenoribosides to dimethylarsinic acid), conversion (e.g. arsenate to dimethylarsinic acid and trimethylarsine oxide by bacterial action in digestive tissues) and/or in situ enzymatic activity in liver tissue. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Arsenic compounds were determined in 21 urine samples collected from a male volunteer. The volunteer was exposed to arsenic through either consumption of codfish or inhalation of small amounts of (CH3)3As present in the laboratory air. The arsenic compounds in the urine were separated and quantified with an HPLC–ICP–MS system equipped with a hydraulic high-pressure nebulizer. This method has a determination limit of 0.5 μg As dm−3 urine. To eliminate the influence of the density of the urine, creatinine was determined and all concentrations of arsenic compounds were expressed in μg As g−1 creatinine. The concentrations of arsenite, arsenate and methylarsonic acid in the urine were not influenced by the consumption of seafood. Exposure to trimethylarsine doubled the concentration of arsenate and increased the concentration of methylarsonic acid drastically (0.5 to 5 μg As g−1 creatinine). The concentration of dimethylarsinic acid was elevated after the first consumption of fish (2.8 to 4.3 μg As g−1 creatinine), after the second consumption of fish (4.9 to 26.5 μg As g−1 creatinine) and after exposure to trimethyl- arsine (2.9 to 9.6 μg As g−1 creatinine). As expected, the concentration of arsenobetaine in the urine increased 30- to 50-fold after the first consumption of codfish. Surprisingly, the concentration of arsenobetaine also increased after exposure to trimethylarsine, from a background of approximately 1 μg As g−1 creatinine up to 33.1 μg As g−1 creatinine. Arsenobetaine was detected in all the urine samples investigated. The arsenobetaine in the urine not ascribable to consumed seafood could come from food items of terrestrial origin that—unknown to us—contain arsenobetaine. The possibility that the human body is capable of metabolizing trimethyl- arsine to arsenobetaine must be considered. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
Published whole tissue arsenic concentrations in polychaete species tissues range from 1.5–2739 µg arsenic/g dry mass. Higher mean total arsenic concentrations are found in deposit‐feeding polychaetes relative to non‐deposit‐feeding polychaete species collected from the same locations. However, mean arsenic concentrations at some of the locations are skewed by the high arsenic concentrations of Tharyx marioni. There appears to be no direct correlation between sediment arsenic concentrations and polychaete arsenic concentrations. Arsenic bioaccumulation by polychaetes appears to be more controlled by the physiology of the polychaetes rather than exposure to arsenic via ingested material or the prevailing physiochemical conditions. Arsenic concentrations in polychaete tissues can vary greatly. Most polychaete species contain the majority of their arsenic as arsenobetaine (57–98%), with trace concentrations of inorganic arsenic (<1%) and other simple methylated species (<7.5%). However, this is not always the case, with unusually high proportions of arsenite (57%), arsenate (23%) and dimethylarsinic acid (83–87%) in some polychaete species. Arsenobetaine is probably accumulated by polychaetes via organic food sources within the sediment. The presence of relatively high proportions of phosphate arsenoriboside (up to 12%) in some opportunistic omnivorous Nereididae polychaete species may be due to ingestion of macroalgae, benthic diatoms and/or phytoplankton. Consideration of the ecology of individual polychaete species in terms of their habitat type, food preferences, physiology and exposure to arsenic species is needed for the assessment of arsenic uptake pathways and bioaccumulation of arsenic. Future research should collect a range of polychaete species from a wide variety of uncontaminated marine habitats to determine the influence of these ecological factors on total arsenic concentrations and species proportions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
This study aimed at developing an accurate method for determining the levels of total arsenic (As) and arsenic species in edible shrimp with the collision/reaction cell (CRC) in the O2 mass-shift mode to remove interferences. The microwave-assisted extraction method demonstrated satisfactory efficiency (86.9%), and As species were separated rapidly within 11?min when the optimized chromatographic conditions were adopted. During the study, the limits of detection, precision, and spike recovery for six arsenic species were in the ranges from 0.010 to 0.028?μg/L, 1.89 to 3.14%, and 96.9 to 103.2%, respectively. The analytical methods were successfully applied to determine the concentrations of total arsenic and As species in eight shrimp samples. The results showed that arsenobetaine was the predominant As species, and inorganic arsenic contents were below 0.5?mg/kg in the shrimp samples analyzed. The health risk assessment indicated that the shrimp samples detected posed no particular risk of As to local consumers.  相似文献   

12.
Five arsenic species, trimethylarsine oxide, dimethylarsenic acid, monomethylarsonic acid, arsenobetaine and sodium arsenite, in urine were analysed by inductively coupled plasma mass spectrometry with ion chromatography (IC ICP MS). Since the toxicities of different arsenic compounds are different, speciation of arsenic compounds is very important in the investigation of metabolisms. In this paper, we applied ion chromatography (IC) as a separation device and inductively coupled plasma mass spectrometry (ICP MS) as a detection device. For separation of the five arsenic compounds, an anion-exchange column and, as mobile phase, tartaric acid were used. The eluent from the IC column was introduced directly into the nebulizer of the ICP MS and analysed at 75 amu. Detection limits were from 4 to 9 pg as arsenic.  相似文献   

13.
The arsenic species present in samples of the crayfish Procambarus clarkii caught in the area affected by the toxic mine‐tailing spill at Aznalcóllar (Seville, Southern Spain) were analyzed. The total arsenic contents ranged between 1.2 and 8.5 µg g?1 dry mass (DM). With regard to the different species of arsenic, the highest concentrations were for inorganic arsenic (0.34–5.4 µg g?1 DM), whereas arsenobetaine, unlike the situation found in marine fish products, was not the major arsenic species (0.16 ± 0.09 µg g?1 DM). Smaller concentrations were found of arsenosugars 1a (0.18 ± 0.11 µg g?1 DM), 1b (0.077 ± 0.049 µg g?1 DM), 1c (0.080 ± 0.089 µg g?1 DM), and 1d (0.14 ± 0.13 µg g?1 DM). The presence of two unknown arsenic species was revealed (U1: 0.058 ± 0.058 µg g?1 DM; U2: 0.12 ± 0.12 µg g?1 DM). No significant differences were seen with respect to the total arsenic contents between the sexes. However, significant differences in the total arsenic contents were revealed between the area affected by the spill and the area not affected, the contents being greater in the affected area. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Two lichens and 12 green plants growing at a former arsenic roasting facility in Austria were analyzed for total arsenic by ICP–MS, and for 12 arsenic compounds (arsenous acid, arsenic acid, dimethylarsinic acid, methylarsonic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, the tetramethylarsonium cation and four arsenoriboses) by HPLC–ICP–MS. Total arsenic concentrations were in the range of 0.27 mg As (kg dry mass)−1 (Vaccinium vitis idaea) to 8.45 mg As (kg dry mass)−1 (Equisetum pratense). Arsenic compounds were extracted with two different extractants [water or methanol/water (9:1)]. Extraction yields achieved with water [7% (Alectoria ochroleuca) to 71% (Equisetum pratense)] were higher than those with methanol/water (9:1) [4% (Alectoria ochroleuca) to 22% (Deschampsia cespitosa)]. The differences were caused mainly by better extraction of inorganic arsenic (green plants) and an arsenoribose (lichens) by water. Inorganic arsenic was detected in all extracts. Dimethylarsinic acid was identified in nine green plants. One of the lichens (Alectoria ochroleuca) contained traces of methylarsonic acid, and this compound was also detected in nine of the green plants. Arsenobetaine was a major arsenic compound in extracts of the lichens, but except for traces in the grass Deschampsia cespitosa, it was not detected in the green plants. In contrast to arsenobetaine, trimethylarsine oxide was found in all samples. The tetramethylarsonium cation was identified in the lichen Alectoria ochroleuca and in four green plants. With the exception of the needles of the tree Larix decidua the arsenoribose (2′R)‐dimethyl[1‐O‐(2′,3′‐dihydroxypropyl)‐5‐deoxy‐β‐D ‐ribofuranos‐5‐yl]arsine oxide was identified at the low μg kg−1 level or as a trace in all plants investigated. In the lichens an unknown arsenic compound, which did not match any of the standard compounds available, was also detected. Arsenocholine and three of the arsenoriboses were not detected in the samples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A method for the determination of arsenic (As) in seafood by inductively coupled plasma atomic emission spectrometry with continuous hydride generation is described. Several analytical parameters have been investigated and optimised. The analytical features of the method (recovery, precision, accuracy and limit of detection) were calculated. Practical detection limit of 3.6 μg/kg fresh weight for As has been reached. The precision of the method expressed as relative standard deviation (R.S.D.) was in the range of 2.7-3.7% and the recovery percentage ranged from 98.4 to 101.8%. The reliability of the developed method was checked by analysing several certified reference materials. A complete mineralization was obtained for arsenobetaine (AsB) containing reference material with a mixture of nitric and sulphuric acids followed by adding hydrogen peroxide in an open digestion system. This method can be applied to routine analysis without any risks of interferences.  相似文献   

16.
In 50 mushroom species (56 samples) from Slovenia, Switzerland, Brazil, Sweden, The Netherlands and USA, total arsenic was determined by radiochemical neutron activation analysis (RNAA). Arsenic concentrations ranged from 0.1 to 30 μg g−1 (dry mass). Arsenic compounds were determined in methanol extracts from the mushrooms by HPLC–ICP–MS. The aim of the study was not only to quantify arsenic compounds in mushrooms but also to uncover trends relating the methylating ability of a mushroom to its taxonomic or evolutionary status. The main arsenic compound found in many mushrooms (various puffballs, Agaricales and Aphyllophorales) was arsenobetaine. Arsenate [As(V)] was the main arsenic species in Laccaria fraterna and Entoloma rhodopolium and arsenite [As(III)] in Tricholoma sulphureum. A mixture of arsenite and arsenate was present in Amanita caesarea. Dimethylarsinic acid (DMA) and methylarsonic acid were present in many mushrooms, but generally as minor components. In Laccaria laccata, Leucocoprinus badhamii and Volvariella volvacea, DMA was the major metabolite. Arsenocholine (AC) and the tetramethylarsonium ion were present in a few species, generally at low concentrations, except for Sparassis crispa, in which AC was the main compound. Tri- methylarsine oxide was not found in any of the mushrooms. In some species small amounts of unknown compounds were also present. The possible taxonomic significance of the metabolite patterns and the predominance of arsenobetaine in more advanced fungal types are discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
A direct flow-injection atomic-absorption spectrometric (FIA-AAS) method for the assessment of inorganic arsenic compounds and their metabolites was developed and statistically evaluated by the estimation of the method evaluation function (MEF), which provides detailed information on the analytical performance of the method, i.e., the average combined uncertainty and the magnitude of potential systematic errors. The method evaluation study demonstrated that the use of standard addition was a necessity to obtain an acceptable method performance at low concentrations typical for low dose exposure. In contrast the use of calibration curves resulted in a method with reduced sensitivity and high systematic error. The developed method, using standard addition, had a limit of detection (2.9 microg/l.) sufficiently low for the determination of hydride-generating arsenic species in urine from non-exposed and low exposed persons. Organoarsenicals such as arsenobetaine and arsenocholine are not detected by this method. Hence, the contribution of these compounds derived from a diet containing seafood does not affect the monitoring of inorganic arsenic compounds after occupational or environmental exposure. The high capacity of the FIA-AAS system (three minutes per sample measured by standard addition) together with the low limit of detection makes this method suitable for biological monitoring of inorganic arsenic exposure even though standard addition is required.  相似文献   

18.
In this opinion paper the toxicokinetic behaviour of arsenosugars is reviewed and compared with that of inorganic arsenic and arsenobetaine. It is concluded that the arsenosugars are similar to inorganic arsenic in terms of metabolite formation and tissue accumulation. As a pragmatic means of generating uniform data sets which adequately represent the toxicity of arsenic in food we recommend reporting partly speciated arsenic concentrations in food commodities in three fractions: i) toxic inorganic arsenic as arsenate (after oxidation); ii) arsenobetaine as established non-toxic arsenic; and iii) potentially toxic arsenic, which includes arsenosugars and other organoarsenicals.  相似文献   

19.
Six arsenic species, arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine and arsenocholine, were separated by coupled column ion chromatography using carbonate and nitric acid as eluents, and were detected by inductively coupled plasma mass spectrometry. Coupling of an anion column with a cation column made the simultaneous determination of both the cationjic and the anionic arsenic species possible by ion chromatography. Extremely low detection limits, below 0.2 μg/1 (as arsenic), were obtained for all the species studied.  相似文献   

20.
A method for the determination of arsenic species in oyster tissue is established. The extraction of arsenic species is carried out by using low‐power microwaves. Quantitative extraction is obtained at a power of 40 W, and in 5 min, using the extracting agent methanol/water (1 + 1). The measurements are carried out using liquid chromatography–UV irradiation–hydride generation–atomic fluorescence detection (LC–UV–HG–AFS). Three arsenic species were detected in oyster tissue: arsenobetaine (AsBet) (87%), a probable arsenosugar (AsS) (4.9%), and dimethylarsinate (DMA) (4.7%). No influence of the clean‐up, the microwave field or the IR drying system on the stability of the arsenic compounds was observed. The extracts can be kept stable up to 3 days at 4 °C. The performance of the method is proved on fresh samples, as they are usually analysed in routine laboratories. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号