首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion and sorption of methyl substituted benzenes through cross-linked nitrile rubber/poly(ethylene co-vinyl acetate) (NBR/EVA) blend membranes has been studied. The influence of blend composition, cross-linking systems, temperature and size of penetrants on the transport behaviour has been analysed. It was observed that as the EVA content increases in the blends, the solvent uptake decreases. An increase in the penetrant size also decreases the solvent uptake. The diffusion experiments were carried out in the temperature range 23–75 °C. As temperature increases the equilibrium uptake also increases. The transport coefficients namely diffusion coefficient, sorption coefficient and permeation coefficient have been calculated. The sorption data has been used to estimate the activation energies for permeation and diffusion. The van’t Hoff relationship was used to determine the thermodynamic parameters. The affine and phantom models for chemical cross-links were used to predict the nature of cross-links. Models for permeability were used and the theoretical values compared with the experimental results.  相似文献   

2.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

3.
The transport behavior of uncrosslinked and crosslinked poly(ethylene‐co‐vinyl acetate) membranes has been investigated using normal alkanes as probe molecules, in the temperature range of 30–60 °C. Benzoyl peroxide was used for crosslinking the matrix. It has been observed that, a critical concentration of crosslinker is necessary for maximum solvent uptake, followed by a decrease at higher concentration. The effect of free volume on liquid transport was investigated by positron annihilation lifetime spectroscopy. The mechanism of transport has been found to deviate from the regular Fickian behavior. The dependence of the transport coefficients on crosslink density, nature of penetrants, and temperature was studied. The polymer–solvent interaction parameter, enthalpy, and entropy of sorption have also been estimated from the transport data. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. Finally, the experimental sorption data were compared with theoretical predictions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2470–2480, 2007  相似文献   

4.
Water sorption and transport properties for a series of homogeneous blends of hydrophobic polyethersulfone and hydrophilic polyethyloxazoline are reported. Only blends that remained homogeneous after exposure to liquid water were studied in detail. Equilibrium solubility of water in the blend films increases with increasing hydrophilic polymer content. For all materials, equilibrium sorption isotherms show dual-mode behavior at low water vapor activities and swelling behavior at high activities. The sorption/desorption kinetics for PES are generally Fickian, but two-stage behavior is evident in blends containing 10 and 20% polyethyloxazoline. Diffusion coefficients decrease with increasing polyethyloxazoline content, owing to a decrease in the fractional free volume. For all materials, the diffusion coefficient shows a positive dependence on water vapor activity or concentration due to plasticization of the material by high levels of sorbed water, but it becomes a greater function of activity as the composition of hydrophilic polymer in the blend is increased. Since the decrease in the diffusion coefficient is greater than the increase in the solubility coefficient, the permeability coefficient decreases with increasing hydrophilic polymer content. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 993–1007, 1997  相似文献   

5.
Molecular transport of aromatic hydrocarbons through nylon/ethylene propylene rubber (EPR) blend has been investigated in the temperature range of 25 to 65 °C. The effect of blend ratio on the transport behavior was studied in detail. Nylon/EPR‐50/50 blend shows the lowest uptake among all the systems studied. This behavior is related to blend morphology, density, and crystallinity of the blend composition. The transport property was correlated with the extent of interfacial adhesion in the blends. The effects of temperature and penetrant size on the sorption behavior were examined. Thermodynamic and Arrhenius parameters were evaluated from the diffusion data. Theoretical and experimental diffusion results were compared. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2136–2153, 2000  相似文献   

6.
Water sorption and transport properties for a series of miscible blends of hydrophobic bisphenol A polysulfone and hydrophilic poly(vinyl pyrrolidone) are reported. Study was restricted to blends that remained homogeneous after exposure to liquid water. The solubility of water in the blend films increased with increasing hydrophilic polymer content. Equilibrium sorption isotherms show dual-mode behavior at low activities and swelling behavior at high activities. The sorption kinetics are generally Fickian for blends containing 20% poly(vinyl pyrrolidone) or less, but exhibit two-stage behavior in blends containing 40% poly(vinyl pyrrolidone). Diffusion coefficients extrapolated to zero concentration decrease with increasing poly(vinyl pyrrolidone) content, owing to a decrease in the fractional free volume. However, the diffusion coefficient becomes a greater function of activity as the composition of hydrophilic polymer in the blend is increased, due to plasticization of the material by large levels of sorbed water. Permeability coefficients generally decrease with increasing poly(vinyl pyrrolidone) content for blends containing 20% poly(vinyl pyrrolidone) or less because the decrease in the diffusion coefficient is greater than the increase in the solubility coefficient. Blends containing 40% poly(vinyl pyrrolidone) have permeability coefficients greater than those of polysulfone due to high water solubility. The permeability coefficients depend on water concentration in approximately the same way for all blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 655–674, 1997  相似文献   

7.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

8.
The miscibility and thermal properties of poly(N‐phenyl‐2‐hydroxytrimethylene amine)/poly(N‐vinyl pyrrolidone) (PHA/PVP) blends were examined by using differential scanning calorimetry (DSC), high‐resolution solid‐state nuclear magnetic resonance (NMR) techniques, and thermogravimetric analysis (TGA). It was found that PHA is miscible with PVP, as shown by the existence of a single composition‐dependent glass transition temperature (Tg) in the whole composition range. The DSC results, together with the 13C crosspolarization (CP)/magic angle spinning (MAS)/high‐power dipolar decoupling (DD) spectra of the blends, revealed that there exist rather strong intermolecular interactions between PHA and PVP. The increase in hydrogen bonding and in Tg of the blends was found to broaden the line width of CH—OH carbon resonance of PHA. The measurement of the relaxation time showed that the PHA/PVP blends are homogeneous at least on the scale of 1–2 nm. The proton spin‐lattice relaxation in both the laboratory frame and the rotating frame were studied as a function of the blend composition, and it was found that blending did not appreciably affect the spectral densities of motion (sub‐Tg relaxation) in the mid‐MHz and mid‐KHz frequency ranges. Thermogravimetric analysis showed that PHA has rather good thermal stability, and the thermal stability of the blend can be further improved with increasing PVP content. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 237–245, 1999  相似文献   

9.
The solubility, diffusivity, and permeability of ethylbenzene in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) at 35, 45 and 55 °C were determined using kinetic gravimetric sorption and pure gas permeation methods. Ethylbenzene solubility in PTMSP was well described by the generalized dual‐mode model with χ = 0.39 ± 0.02, b = 15 ± 1, and CH = 45 ± 4 cm3 (STP)/cm3 PTMSP at 35 °C. Ethylbenzene solubility increased with decreasing temperature; the enthalpy of sorption at infinite dilution was −40 ± 7 kJ/mol and was essentially equal to the enthalpy change upon condensation of pure ethylbenzene. The diffusion coefficient of ethylbenzene in PTMSP decreased with increasing concentration and decreasing temperature. Activation energies of diffusion were very low at infinite dilution and increased with increasing concentration to a maximum value of 50 ± 10 kJ/mol at the highest concentration explored. PTMSP permeability to ethylbenzene decreased with increasing concentration. The permeability estimated from solubility and diffusivity data obtained by kinetic gravimetric sorption was in good agreement with permeability determined from direct permeation experiments. Permeability after exposure to a high ethylbenzene partial pressure was significantly higher than that observed before the sample was exposed to a higher partial pressure of ethylbenzene. Nitrogen permeability coefficients were also determined from pure gas experiments. Nitrogen and ethylbenzene permeability coefficients increased with decreasing temperature, and infinite dilution activation energies of permeation for N2 and ethylbenzene were −5.5 ± 0.5 kJ/mol and −74 ± 11 kJ/mol, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1078–1089, 2000  相似文献   

10.
The effect of film thickness on the water‐sorption behaviors of poly(3,4′‐oxydiphenylene pyromellitimide) (PMDA‐3,4′ODA) films was gravimetrically investigated and interpreted with a Fickian diffusion model in films. The diffusion coefficient increased with increasing film thickness, whereas the water uptake and the activation energy decreased. Overall, the water‐sorption behaviors of PMDA‐3,4′ODA films are strongly dependent on the changes in morphological structure, which originated from the variation in the film thickness. As the film thickness increased, the molecular in‐plane orientation decreased, consequently leading to the increased diffusion coefficient and decreased activation energy. In contrast, the water uptake decreased with increasing film thickness because of the increase in the out‐of‐plane packing order. The diffusion coefficient and activation energy were strongly dependent on the in‐plane orientation in the films. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 669–676, 2001  相似文献   

11.
The effect of liquid–liquid phase‐separation (LLPS) on the crystallization behavior and mechanical properties of poly(ethylene‐ran‐vinyl acetate) (EVA) with various amounts of vinyl acetate and paraffin wax blend was investigated. The blend of EVA‐H (9.5% vinyl acetate) and the wax became homogeneous at temperatures greater than its upper critical solution temperature (UCST) (98°C), and an LLPS was observed between UCST and the melting point of 88°C for EVA‐H in the blend. The existence of the LLPS is attributed to the relatively large amount of the hydrophilic component of vinyl acetate in EVA, although the molecular weight of the wax was just 560. However, LLPS did not occur for the EVA/wax blend when the content of vinyl acetate in EVA was less than 3%. This behavior was explained by using the Flory–Huggins lattice model with an effective interaction parameter. The degree of crystallinity of EVA‐H in the EVA‐H/wax blend, judged from a melting endothermic peak in differential scanning calorimeter (DSC) thermograms obtained during heating runs, decreased with increasing duration time in the LLPS region. The flexural modulus of the EVA/wax blend became maximum at certain blend composition (about 30 ∼ 40 wt % EVA depending upon the amount of vinyl acetate). This behavior can be explained by the fact that this blend composition has the largest relative degree of crystallinity of EVA measured by DSC and wide‐angle X‐ray scattering method. We found that the flexural modulus of the binder itself is directly related to that of a feedstock consisting of larger amounts of metal powder and the binder, which can help someone to develop a suitable binder system for a powder injection molding process. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1991–2005, 1999  相似文献   

12.
The nylon 1010/ethylene‐vinyl acetate rubber (EVM)/maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) ternary blends were prepared. The effect of EVM/EVA‐g‐MAH ratio on the toughness of blends was examined. A super tough nylon 1010 blends were obtained by the incorporation of both EVM and EVA‐g‐MAH. Impact essential work of fracture (EWF) model was used to characterize the fracture behavior of the blends. The nylon/EVM/EVA‐g‐MAH (80/15/5) blend had the highest total fracture energy at a given ligament length (5 mm) and the highest dissipative energy density among all the studied blends. Scanning electron microscopy images showed the EVM and EVA‐g‐MAH existed as spherical particles in nylon 1010 matrix and their size decreased gradually with increasing EVA‐g‐MAH content. Large plastic deformation was observed on the impact fracture surface of the nylon/EVM/EVA‐g‐MAH (80/15/5) blend and related to its high impact strength. Then with increasing EVA‐g‐MAH proportion, the matrix shear yielding of nylon/EVM/EVA‐g‐MAH blends became less obvious. EVM and EVA‐g‐MAH greatly increased the apparent viscosity of nylon 1010, especially at low shear rates. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 877–887, 2009  相似文献   

13.
Immiscible polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blends with two different compositions, one (PP/EVA = 80/20) exhibits the typical sea‐island morphology and the other (PP/EVA = 60/40) exhibits the cocontinuous morphology, were prepared with different contents of f‐MWCNTs. The fracture behaviors, including notched Izod impact fracture and single‐edge notched tensile (SENT) fracture, were comparatively studied to establish the role of f‐MWCNTs in influencing the fracture toughness of PP/EVA blends. Our results showed that, for PP/EVA (80/20) system, f‐MWCNTs do not induce the fracture behavior change apparently. However, for PP/EVA (60/40) system, the fracture toughness of the blend increases dramatically with the increasing of f‐MWCNTs content. More severe plastic deformation accompanied by the fibrillar structure formation was observed during the SENT test. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/EVA (60/40) with f‐MWCNTs is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage. Further results based on crystalline structures and morphologies of the blends showed that a so‐called dual‐network structure of EVA and f‐MWCNTs forms in cocontinuous PP/EVA blends, which is thought to be the main reason for the largely improved fracture toughness of the sample. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1331–1344, 2009  相似文献   

14.
The diffusion and permeation properties of liquid water through different polar and nonpolar polymers and copolymers were studied with a highly sensitive permeameter. The transient permeation fluxes through the polar polymer films could be fitted well only with an exponential equation for the diffusivity concentration dependence; this empirical exponential equation represented the diffusion plasticization effect of water on the materials. For the hydrophobic polyolefins, this exponential equation was no longer valid, and another form of the equation was empirically found to account for the reduction of the water diffusivity with the extent of the permeation. Such a negative plasticization effect might be attributed to the formation of water clusters in the polyolefins. The values of the diffusion coefficient of water in the dry polar polymers were smaller than those in dry polyolefins, but the opposite behavior was found for the permeability because it was much more favorable for water sorption in the polar polymers than in the hydrophobic polyolefins. For the ethylene–vinylacetate copolymers, the plasticization effect of water on its own diffusion was negative for the sample with a low vinyl acetate (VA) content; it became nil at 19 wt % VA and positive at higher VA contents. This increase in the extent of the water sorption with the increase in the VA content led to a steady increase in the water permeability in the poly(ethylene‐co‐vinylacetate) copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1998–2008, 2000  相似文献   

15.
Measurements of the complex permittivity were used to study miscibility and phase behavior in blends of poly(vinyl chloride) (PVC) with two random ethylene—vinyl acetate (EVA) copolymers containing 45 and 70 wt % of vinyl acetate. The dielectric β relaxation of the pure polymers and blends was followed as a function of temperature and frequency for different blend compositions and thermal treatments. Blends of EVA 70/PVC were found to be miscible for compositions of about 25% EVA 70 and higher. Blends of lower EVA 70 content showed evidence of two-phase behavior. EVA 45/PVC blends were found to be miscible only at the composition extremes; at intermediate compositions these blends were two-phase, partially miscible. Both blend systems showed lower critical solution temperature behavior. Phase separation studies revealed that in the EVA 45/PVC blends, PVC was capable of diffusing into the higher Tg phase at temperatures below the Tg of the upper phase. In the blends, ion transport losses were significant above the loss peak temperatures, and in the two-phase systems, often obscured the upper temperature loss process. It was shown possible, however, to correct the loss curves for this transport contribution.  相似文献   

16.
Chlorinated nitrile rubber (Cl-NBR) has been blended with chlorinated ethylene propylene diene rubber (Cl-EPDM) in different ratios by a conventional mill mixing method. The effect of the blend ratio on processing characteristics, mechanical properties (such as tensile and tear strength, elongation at break, hardness, abrasion resistance, heat build-up and resilience), structure, morphology, glass transition temperature (Tg), thermal stability, flame retardancy, oil resistance, AC conductivity, dielectric properties and transport behavior of petrol, diesel and kerosene were investigated. The shift in absorption bands of blends studied from FTIR spectra, single Tg from DSC analysis and decrease in amorphous nature from XRD showed the molecular miscibility in Cl-NBR/Cl-EPDM blends. SEM images showed the uniform mixing of both Cl-NBR and Cl-EPDM in a 50/50 blend ratio. The TGA curves indicated the better thermal stability of the polymer blend. The elongation at break, heat build-up, resilience and hardness of the polymer blend decreases with an increase in Cl-NBR content in the blend whereas the flame and oil resistance were increased with increase in Cl-NBR content. Among the polymer blends, the maximum torque, tensile strength, tear and abrasion resistance was obtained for the 50/50 blend ratio because of the effective interfacial interactions between the blend components. AC conductivity and dielectric properties of polymer blend increased with increase in the ratio of Cl-NBR in the blend. Different transport properties such as diffusion, permeation and sorption coefficient were measured with respect to nature of solvent and different blend ratios. Temperature dependence of diffusion was used to estimate the activation parameters and the mechanism of transport found to be anomalous.  相似文献   

17.
Polypropylene (PP) and polyamide‐6 (Ny‐6) blends with a 70/30 composition have been studied by broadband dielectric spectroscopy. The unmodified blends are immiscible, and 10% of PP functionalized with maleic anhydride was added as a compatibilizer. The influence of the compatibilizer on the water sorption and on the molecular dynamics of the Ny‐6 phase is followed by the changes induced in the dielectric loss spectra of these blends in both wet and dry states. The shortest range motions are unaffected by the compatibilizer in the dry state, but a higher water sorption is observed in the unmodified blend. Higher activation energies are found for the β relaxation in the dry blends than for the Ny‐6 homopolymer, showing the existence of constraints on these longer scale motions. During increasing temperature experiments, two segmental modes are recorded, the lower temperature mode corresponding to the plasticized material; as the temperature is raised, a second cooperative mode is found, originating in the dry Ny‐6 amorphous phase, rigidized by the loss of moisture. The comparison of the dielectric strengths of the modes shows that the unmodified blend absorbs more water than the compatibilized blend. The segmental dynamics are unaffected by compatibilization. At high temperatures, the high temperature tail of the segmental mode is much higher in the absence of the compatibilizer. The contribution of a peak due to interfacial polarization is lowered by the presence of the compatibilizer, which makes the interface more diffuse and the trapping of free carriers less effective. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1408–1420, 2005  相似文献   

18.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   

19.
Asymmetric biphenyl type polyimides (PI) derived from 2,3,3′,4′‐biphenyltetracarboxylic dianhydride (a‐BPDA) and p‐phenylenediamine (PDA) or 4,4′‐oxydianiline (ODA) show higher Tgs, and much better thermoplasticity than the corresponding isomeric PIs from symmetric 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA). In addition, a‐BPDA‐derived PIs are completely amorphous owing to their bent chain structures and highly distorted conformations, whereas the PIs from s‐BPDA are semicrystalline. a‐BPDA‐derived PIs possessing these properties or the a‐BPDA monomer were used as a flexible blend component or a comonomer to improve the insufficient thermoplasticity of semirigid s‐BPDA/PDA homo polymer. The blends composed of s‐BPDA/PDA (80%) with a‐BPDA‐derived PIs (20%), as well as the s‐BPDA/PDA‐based copolymer containing 20% a‐BPDA, showed a certain extent of thermoplasticity above the Tgs without causing a decrease in Tg. In addition, these blends and copolymer provided comparatively low thermal expansion coefficient (ca. 18 ppm). The improved film properties for the blends are related to good blend miscibility. On the other hand, when s‐BPDA/ODA was used as a flexible matrix polymer instead of a‐BPDA‐derived PIs, the 80/20 blend film annealed at 400°C exhibited no prominent softening at the Tg. This result arises from annealing‐induced crystallization of the flexible s‐BPDA/ODA component. Thus, these results revealed that a‐BPDA‐derived PIs are promising candidates as matrix polymers for semirigid s‐BPDA/PDA for the present purpose. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2499–2511, 1999  相似文献   

20.
The water sorption of chitosan has been studied at 20 °C. Water transport is governed by a Fickian process for relative humidities lower than 0.4, and in that range of partial pressures, the diffusion coefficient is concentration‐dependent. At a higher activity, anomalous diffusion is observed. The sorption isotherm is well described by the Guggenheim‐Anderson‐de Boer (GAB) model, and the clustering phenomenon observed at high relative pressures can be studied with the parameters of this model. The water permeability coefficient greatly increases with the relative pressure, and the water plasticization effect leads to a loss of the gas barrier properties under wet conditions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3114–3127, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号