首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogen bonds in films of the polyurethane and the core‐shell type polyacrylate‐polyurethane microemulsions have been studied by FTIR spectroscopy in the regions of  NH absorption and CO absorption. The effects on hydrogen bonds of the composition, the core‐shell ratio were revealed. At the same time, the relationship between the hydrogen bonds and the crosslinked structures (Type A and Type B) was discovered. The shifts of the  NH and CO stretching bands to higher frequencies and the shift of  NH bending bands to lower frequencies, with the increase of acetone CO number in the core, mean that the hydrogen bonds between the soft and hard segments, and those in the short‐range order in the hard segment phase, are broken. The dipole/dipole interaction which is supposed to exist between the acetone CO groups in the core and the urethane CO in the shell can change the hydrogen bond distribution in the shell, and at the same time, lead to hydrogen bonds between acetone CO in the core and the urethane  NH in the shell. Type A and B crosslinked structure between the core and the shell located at the interface of the core and the shell can confine the acetone CO within the crosslinking network, and Type B crosslinked structure also decreases the acetone CO numbers. These weaken the dipole/dipole interaction between the acetone CO and the urethane CO, and lead to the decrease of the effect of the acetone CO groups on the hydrogen bond distribution in the shell. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2642–2650, 1999  相似文献   

2.
The tensile properties of polyether-based polyurethane (PU) filaments decrease with increasing chlorine concentrations as well as with treatment times. Fourier transform infrared (FTIR) results show the formation of quinoid, azo, and aldehyde groups in the chlorine-treated PU, and increased hydrogen bonding between the C O C in the soft segment and the N H in the hard segments. A breakdown mechanism involving chain cleavages along the ether linkages in the soft segments as well as at the urethane linkages of the hard–soft segment interfaces is proposed. Chlorine-treated PU showed increased solubility in tetrahydrofuran (THF). The molecular weight data of the THF-soluble portion of treated PU also support the proposed locations of chain scissions. The increased soft segment Tg and Tm with increasing chlorine concentrations are results of increased phase-mixing and hydrogen bonding. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3263–3273, 1997  相似文献   

3.
A series of novel multifunctional hydrogels that combined the merits of both thermoresponsive and biodegradable polymeric materials were designed, synthesized, and characterized. The hydrogels were copolymeric networks composed of N‐isopropylacrylamide (NIPAAM) as a thermoresponsive component, poly(L‐lactic acid) (PLLA) as a hydrolytically degradable and hydrophobic component, and dextran as an enzymatically degradable and hydrophilic component. The chemical structures of the hydrogels were characterized by an attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) technique. The hydrogels were thermoresponsive, showing a lower critical solution temperature (LCST) at approximately 32 °C, and their swelling properties strongly depended on temperature changes, the balance of the hydrophilic/hydrophobic components, and the degradation of the PLLA component. The degradation of the hydrogels caused by hydrolytic cleavage of ester bonds in the PLLA component was faster at 25 °C below the LCST than at 37 °C above the LCST, determined by the ATR–FTIR technique. Due to their multifunctional properties, the designed hydrogels show great potential for biomedical applications, including drug delivery and tissue engineering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5054–5066, 2004  相似文献   

4.
Poly(1,3‐cyclohexadiene) (PCHD) derivatives were synthesized via facile chemical modification reactions of the residual double bond in the repeat unit. The oxidation and degradation of PCHD was investigated to enable subsequent controlled epoxidation reactions. PCHD exhibited a 15% weight loss at 110 °C in the presence of oxygen. The oxidative degradation, demonstrated by gel permeation chromatography (GPC) and 1H NMR spectroscopy, was attributed to main‐chain scission. Aldehyde and ether functional groups were introduced into the polymer during the oxidation process. PCHD was quantitatively epoxidized in the absence of deleterious oxidation with meta‐chloroperoxybenzoic acid. 1H and 13C NMR spectroscopy confirmed that polymers with controlled degrees of epoxidation were reproducibly obtained. Epoxidized PCHD exhibited a glass‐transition temperature at 154 °C, which was slightly higher than that of a PCHD precursor of a nearly equivalent molecular weight. Moreover, GPC indicated the absence of undesirable crosslinking or degradation, and the molecular weight distributions remained narrow. The thermooxidative stability of the fully epoxidized polymer was compared to that of the PCHD precursor, and the epoxidized PCHD exhibited an initial weight loss at 250 °C in oxygen, which was 140 °C higher than the temperature for PCHD. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 84–93, 2003  相似文献   

5.
Polyethylene produced by a vanadium-based polymerization catalyst contains long-chain branching as determined by NMR and rheology, even though the polymer has very low levels of vinyl unsaturation. A new mechanism is proposed for the formation of the long-chain branching, which involves C H bond activation of the polyethylene backbone through a σ-bond metathesis reaction, followed by ethylene insertion at the new V C bond. Consistent with the proposed C H bond activation mechanism, the polymerization catalyst was also found to insert ethylene into the C H bonds of alkanes such as heptane. A bridged metallocene catalyst was also found to activate C H bonds of alkanes suggesting this new mechanism may explain the formation of long-chain branching in some metallocene-produced polyethylene. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2889–2898, 1998  相似文献   

6.
Water soluble alternating copolymers were prepared by oxidative free radical copolymerization of 4‐vinylbenzyl methoxypoly(oxyethylene) ether (PEGSt) and molecular oxygen at 50 °C. NMR spectroscopy established alternate sequence of PEGSt and peroxy bonds ( O O ) along the polymer main‐chain. The obtained polymers show temperature induced hydrophilic to hydrophobic phase separation, confirmed by UV‐visible spectroscopy and dynamic light scattering. The cloud point temperature (TCP) of the polymers can be tuned by changing the chain length of side‐chain poly(ethylene oxide) and incorporation of hydrophobic methyl methacrylate in the copolyperoxides. Exothermic degradation of these polyperoxides was confirmed by differential scanning calorimetry and the degradation products have been characterized by electron impact mass spectroscopy. Finally, N,N‐dimethylacrylamide was polymerized in the presence of these polyperoxides in toluene, highlighting their potential as polymeric free radical initiator during polymerization of vinyl monomers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2030–2038  相似文献   

7.
The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L ‐lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen‐bonded N? H stretching band. The interconversion between the “free” and hydrogen‐bonded N? H and C?O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C?O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 °C/min or higher, the crystallization of the PLLA soft segments was prohibited. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 685–695, 2009  相似文献   

8.
Polymers with amidine groups  NH CRN in the main chain were prepared by acid catalysed melt polycondensation of 4,4′-diaminodiphenyl methane (DAPM) with various orthoesters. The resulting polyamidines were characterized by 1H-, 13C- and 15N-NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TGA) and wide angle x-ray scattering (WAXS) measurements. The properties of the polyamidines are strongly determined by the substituent R on the amidine group. Some peculiarities of the polyformamidine (RH) could be attributed to the conformation of the amidine group. Glass transition temperatures varied from 106 to 161°C depending on the substituent R. All polyamidines possessed good thermal stability up to 370°C and, with exception of the polyformamidine, good solubility in common solvents. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 929–938, 1998  相似文献   

9.
Selective oxidative cleavage of a C C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C C bond cleavage of ketone for C N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In‐depth studies show that both α‐C H and β‐C H bonds adjacent to the carbonyl groups are indispensable for the C C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α‐C H bond. Amines lower the activation energy of the C C bond cleavage, and thus promote the reaction. New insight into the C C bond cleavage mechanism is presented.  相似文献   

10.
Wang  Qing  Liu  Ying  Xu  Fang  Liu  Qi  Cui  Da 《Journal of Thermal Analysis and Calorimetry》2019,136(4):1631-1643

The cleavage behavior of covalent bonds in Xilinguole (XLGL) lignite and changes in chemical structure of lignite and its chars during low-temperature pyrolysis were investigated by thermogravimetric (TG) analysis and Fourier-transform infrared (FTIR) spectroscopy. Based on the TG and differential thermogravimetric (DTG) analysis results, the cleavage of different types of chemical bonds in lignite occurred mainly at four certain temperatures, 170 °C, 376 °C, 432 °C, and 521 °C. The latter three were selected as the final pyrolysis temperatures of chars evaluated in this study. The FTIR analysis results indicate that thermal treatment increased the relative content of two and three adjacent H deformation structures but decreased that of four adjacent H deformation structure. This was caused by the cleavage of Cal–Cal and Car–Cal bonds. The oxygen-containing functional groups in lignite are dominated by C–O and C–OH groups with a lower chemical reactivity than C=O–C and conjugated C=O groups. Moreover, XLGL lignite has the highest ratio of CH2/CH3 which declines with increasing temperature, indicating the decrease in the length of aliphatic chains and increase in the degree of branching of aliphatic side chains. This change mainly resulted from the cleavage of Cal–O, Cal–Cal, and Car–Cal bonds. Furthermore, XLGL lignite and its chars contain five specific hydrogen bonds: OH–N, cyclic OH, OH–ether O, OH–OH, and OH–π hydrogen bonds. The relative content of OH–OH hydrogen bond was the highest, indicating that OH–OH hydrogen bond has the highest thermal stability.

  相似文献   

11.
Polyester‐based polyurethanes containing ≈60 wt % of polyester were synthesized from low molecular weight polyester (Mn ≈2000) and 4,4′‐methylene bis(phenyl isocyanate) (MDI), with butanediol as a chain extender and glycerol as a crosslinker. The triol crosslinker was used in substitution for the 1,4‐butanediol chain extender; thus, the crosslinker was chemical bonded to the hard segments of polyurethane. The morphologies of these polyurethanes were studied by differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), TMA (thermal mechanical analysis), and FTIR (Fourier transform infrared spectroscopy). Owing to the highly steric hindrance, the presence of triol crosslinker in the hard segments resulted in a decrease in the aggregation of hard segments through hydrogen bonding. The experimental results revealed that the degree of phase segregation of soft and hard segments decreased with increasing the triol crosslinker content in the hard segments. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2673–2681, 1999  相似文献   

12.
In connection with ferroelectric behavior of aromatic polyamides poled at a high electric field, polarized infrared spectra were studied in poled films of crystalline and amorphous aromatic polyamides consisting of ring systems to elucidate the relation between the orientation of polar groups and the ferroelectric polarization. The infrared spectra revealed that the CO and N H bonds oriented preferably along the poling direction in both crystalline and amorphous polyamides. The crystallinity of the crystalline polyamide increased with poling. In the amorphous polyamide, strong intermolecular hydrogen bonding is closely related to the retention of ferroelectric polarization in the frozen state of molecular motions below the glass transition temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 531–538, 1999  相似文献   

13.
Phosphonylation of polysiloxane and cyclosiloxane oligomers is described. Hydrosilylation of vinylbenzyl chloride (VBC) with a poly(methylhydrosiloxane), or its cyclic monomer, followed by phosphonylation with triethyl phosphite leads to the production of stable phosphonosiloxanes that are characterized by  Si C and  C P bonds. The polymer, which is a liquid with a glass transition temperature of −38.3 °C, is soluble in alcohols and an alcohol and water mixture. The phosphonylated siloxanes dissolve and chelate uranyl nitrate and transition metal salts. The hydrosilylation of VBC yields α and β isomers:  Si CH2 CH2 and  Si CH(CH3); the ratio between these two depends upon the type of solvent and the reaction conversion. A kinetic study of the hydrosilylation reaction of VBC suggests a second order in respect to the reactants. The reaction rate is dependent upon the catalyst concentration and temperature. Hydrosilylation of vinylbenzyl phosphonate could not be accomplished with the platinum (complex) catalyst; this is attributed to the presence of phosphoryl groups that are strong electron donors. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4043–4053, 1999  相似文献   

14.
Thin plasma polymer films were deposited from several liquid monomers (mainly siloxane‐type monomers) in a low‐temperature cascade arc torch (CAT) reactor. The effects of monomer structures and plasma parameters on internal stress in the films were experimentally studied. By appropriately adjusting these factors, the internal stress in the film was reduced nearly two orders of magnitude from 109 to 107 dyn/cm2. It was noted that the polymer films prepared from siloxane‐type monomers showed lower internal stress than their hydrocarbon counterpart. Fourier transform‐infrared spectroscopy (FTIR) studies indicated that a large amount of Si O Si structure from siloxane monomers, which are very flexible bonds, was preserved in the resultant plasma polymers. Ellipsometry results suggested that the internal stress can be qualitatively correlated with the refractive index of the plasma polymer film. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1577–1587, 1999  相似文献   

15.
Achieving selective C H bond cleavage is critical for developing catalytic processes that transform small alkanes to value‐added products. The present study clarifies the molecular‐level origin for an exceptionally strong preference for propane to dissociate on the crystalline PdO(101) surface via primary C H bond cleavage. Using reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations, we show that adsorbed propane σ‐complexes preferentially adopt geometries on PdO(101) in which only primary C H bonds datively interact with the surface Pd atoms at low propane coverages and are thus activated under typical catalytic reaction conditions. We show that a propane molecule achieves maximum stability on PdO(101) by adopting a bidentate geometry in which a H Pd dative bond forms at each CH3 group. These results demonstrate that structural registry between the molecule and surface can strongly influence the selectivity of a metal oxide surface in activating alkane C H bonds.  相似文献   

16.
Poly(dimethylsiloxane) was studied by laser Raman spectroscopy and differential scanning calorimetry. The Si O Si skeletal mode at 489 cm−1 and the C Si C deformation bands at 188 cm−1 and 158 cm−1 were studied as functions of temperature from ambient to −130°C, and effects of temperature interpreted in accordance with results from thermal analysis. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2805–2810, 1998  相似文献   

17.
Cyclohexylcarbodiimidoethyl methacrylate (CCEMA) and t‐butylcarbodiimidoethyl methacrylate (t‐BCEMA) were prepared in a two‐step synthesis. These monomers were then used to prepare carbodiimide‐functionalized PBMA and PEHMA latex particles, employing two‐stage emulsion polymerization, with the carbodiimide–methacrylate monomers being introduced only in the second stage under monomer‐starved conditions. During emulsion polymerization, the carbodiimide moiety ( NCN ) was found to be unstable at pH 4, but stable when the pH of the dispersion was increased to 8, using NaHCO3 as the buffer. Survival of  NCN group against hydrolysis during the polymerization, and during storage in the dispersion, was enhanced by using EHMA as the comonomer (more hydrophobic) and the t‐butyl carbodiimide derivative. The t‐butyl group provides more steric hindrance to the hydrolysis reaction. A decrease in the reaction temperature from 80°C to 60°C was also found to increase the extent of  NCN group incorporation during emulsion polymerization. Under ideal conditions, more than 98% of the  NCN groups in the monomer feed are successfully incorporated into the latex. When these latex particles are mixed with a  COOH containing latex and allowed to dry, polymer diffusion leading to crosslinking occurs. Films annealed at 60°C reach a gel content of 60% in 10 h. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 855–869, 2000  相似文献   

18.
Three novel types of thiophene‐containing oxime sulfonates with a big π‐conjugated system were reported as non‐ionic photoacid generators. The irradiation of the newly synthesized photoacid generators using near UV–visible light‐emitting diodes (LEDs) (365–475 nm) results in the cleavage of two weak N O bonds in single molecules, which lead to the generation of different sulfonic acids in good quantum and chemical yields. The mechanism for the N O bond cleavage for acid generation was supported by the UV–visible spectra and real‐time 1H NMR spectra. They are developed as high‐performance photoinitiators without any additives for the cationic polymerization of epoxide and vinyl ether upon exposure to near‐UV and visible LEDs (365–475 nm) at low concentration. In the field of photopolymerization, especially visible light polymerization, it has great potential for application. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 776–782  相似文献   

19.
High‐density polyethylene (HDPE) and low‐density polyethylene (LDPE) were irradiated in vacuo at 30–220 and 30–360°C, respectively, with γ‐rays at doses of 10–400 kGy. Temperature dependence of cross‐linking and gas evolution was investigated. It was found that cross‐linking was the predominant process up to 300°C and the gel point decreased smoothly with temperature. The increase of G(x) with temperature was likely attributed to the temperature effect on addition of radicals to the double bonds present in the polymer. Above 300°C, the gel fraction at a given dose decreased remarkably with temperature and turned to zero at 360°C. The molecular weight variation determined with gel permeation chromatography (GPC) indicated the enhanced degradation at 360°C by radiation. G‐values of H2 increased with temperature and varied with dose. The compositions of the C1–C4 hydrocarbons evolved depended on the structures of side branches. Raising the temperature favored the formation of unsaturated hydrocarbons, and the yield of unsaturated relative to saturated hydrocarbons decreased with dose. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1541–1548, 1999  相似文献   

20.
Novel fluorinated polyurethanes (FPUs) were prepared by living radical polymerization of polyurethanes and hexafluorobutyl acrylate. The structures of the FPUs were characterized by FTIR, 1H NMR, GPC, DSC, and XPS. The fluorinated polyurethane polymerization was investigated and showed monomer conversion, and molecular weight increased with increasing reaction time. In this way, the fluorine content in polyurethane could be easily adjusted by controlling the content of the fluorinated acrylate monomer. The mechanical evaluation shows that FPUs exhibit good mechanical properties. Morphology of FPU films was observed by scanning electron spectroscopy. The effects of the fluorine content on the surface properties and oxidative stability of FPUs were investigated. FPUs films were devoid of significant surface degradation after immersion in 20% H2O2 and 0.1 M CoCl2 at 37 °C for 5 weeks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3248–3256, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号