首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The phase behavior of intermediately segregated (χN = 45) poly(ethylene)‐poly(ethylethylene) (PE–PEE) diblock copolymers and PE–PEE binary blends are characterized using transmission electron microscopy and small‐angle X‐ray scattering. Surprisingly, the preparation‐dependent, nonequilibrium phase behavior can be overwhelming even at this degree of segregation. A pure diblock with a poly(ethylene) volume fraction of fPE = 0.46 exhibited coexisting lamellae and perforated layers when prepared using a precipitation technique, but contained only the lamellar morphology when solvent cast. This preparation dependence was more dramatic in binary diblock copolymer blends with average compositions of 〈fPE〉 = 0.44, 0.46, and 0.48. Precipitated blends exhibited a microphase separated structure that was disordered and bicontinuous; however, solvent cast samples exhibited either a cylindrical, coexisting cylindrical and lamellar, or lamellar morphology. This nonequilibrium behavior is attributed to the high degree of segregation and the proximity to the cylinder/lamellae phase boundary. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2229–2238, 1999  相似文献   

2.
The structure and mechanical properties of the injection‐molded products for the binary blends composed of an isotactic polypropylene (PP) and a rubbery ethylene‐1‐hexene copolymer (EHR) were studied. The following two types of blends were employed: one is the incompatible blend of PP and ethylene‐rich EHR; the other is the compatible blend of PP and 1‐hexene‐rich EHR. The incompatible blend shows a phase‐separated morphology, in which EHR domains in the skin layer highly orient to the flow direction. On the other hand, the compatible blend shows fairly homogeneous morphology in the skin and core regions, in which EHR molecules are dissolved into the amorphous PP region. The measurements of birefringence and infrared dichroism revealed that the magnitude of molecular orientation along the flow direction for the compatible blend is larger than that for the incompatible blend. Nevertheless, it was also found that anisotropy of the mechanical properties for the compatible blend is less prominent, which is attributed to lack of the mechanical connection between neighbor crystalline fragments aligned perpendicular to the flow direction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 701–713, 1999  相似文献   

3.
In this study, the structural factors controlling the yield in isotactic polypropylene materials were theoretically investigated. To describe the yielding behavior of spherulitic polypropylenes, we introduced a new structural unit, lamellar clusters, which are several stacked lamellae bound by tie molecules. It was shown that tie molecules between adjacent lamellar clusters produce a concentrated load acting on the cluster surface, leading to the bending deformation of the lamellar clusters. The yielding behavior can be explained if one assumes that the disintegration of the lamellar clusters occurs when the elastic‐strain energy stored by the bending deformation reaches a critical value. By applying the fracture theory of composites to a system consisting of lamellar clusters and tie molecules, we found the yield stress σy to be proportional to , in which EY is the Young's modulus and Uy is the yield energy. The proportional coefficient between σy and depends only on the cluster size and tie‐molecule density, so this proportionality is expected to be true for other spherulitic semicrystalline polymers such as polyethylenes, being independent of temperature and tensile rate. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1037–1044, 2000  相似文献   

4.
With laser scanning confocal fluorescence microscopy, we demonstrate a novel type of morphology evolution in moderately thick films (70–100 μm) of ternary blends of polypropylene (PP), polyethylene (PE), and ethylene–propylene rubber (EPR), in which EPR is labeled with a benzothioxanthene dye (HY‐EPR). The blends are prepared by solution blending, and the phase morphology evolves during the annealing of the blend films in a stainless steel mold. Our results indicate that wetting of the mold surface is a driving force in morphology evolution for the two blend compositions investigated. For 81/14/5 PP/PE/HY‐EPR, phase evolution within the mold results in a laminar structure and hydrodynamic channels, features which have previously been found in thin films of polymer blends as a result of surface‐directed spinodal decomposition. In a blend with a lower weight fraction of the dispersed phase (92/7/1 PP/PE/HY‐EPR), we find that the PE/HY‐EPR domains are larger and more polydisperse closer to the surface because of wetting of the mold wall. We also show that the phase morphology in these films can be controlled by the nature of one or both of the surfaces being varied. When one of the mold surfaces is replaced with a thin film of PP homopolymer, we observe draining of PE/HY‐EPR from the PP to the mold surface, which results in a bilayer structure. A trilayer morphology is likewise obtained by the replacement of both mold surfaces with PP. We also carry out three‐dimensional image reconstruction on a single PE/HY‐EPR particle within the 81/14/5 PP/PE/HY‐EPR blend to obtain detailed information on the interphase structure. We find that HY‐EPR of this composition (30/70 ethylene/propylene) fully coats the PE dispersed phase and partially penetrates the PE droplets. This result falls between the interphase structures found for previously investigated EPR compositions (40/60 and 80/20 ethylene/propylene). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 637–654, 2003  相似文献   

5.
For a more complete understanding of the toughening mechanism of polypropylene (PP)/ethylene‐propylene‐diene rubber (EPDM) blends, dynamic packing injection molding was used to control the phase morphology and rubber particle orientation in the matrix. The relative impact strength of the blends increased at low EPDM contents, and then a definite ductile–brittle (D–B) transition was observed when the EPDM content reached 25 wt %, at which point blends should fail in the ductile mode with conventional molding. Wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to investigate the shear‐induced crystal structure, morphology, orientation, and phase separation of the blends. WAXD results showed that the observed D–B transition took place mainly for a constant crystal structure (α form). Also, no remarkable changes in the crystallinity and melting point of PP were observed by DSC. The highly oriented and elongated rubber particles were seen via SEM at high EPDM contents. Our results suggest that Wu's criterion is no longer valid when dispersed rubber particles are elongated and oriented. The possible fracture mechanism is discussed on the basis of the stress concentration in a filler‐dispersed matrix. It can be concluded that not only the interparticle distance but also the stress fields around individual particles play an important role in polymer toughening. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2086–2097, 2002  相似文献   

6.
A benzothioxanthene‐labeled ethylene‐butene rubber has been synthesized and tested as a potential fluorescent tracer for the impact modifier (IM) phase in laser scanning confocal fluorescence microscopy (LSCFM) studies of thermoplastic olefin (TPO) morphology. The amino‐functional Hostasol Yellow derivative HY‐DP reacts with maleated EBR‐28 to give a good labeling yield (ca. 70%) and a dye concentration of 0.051 mmol/g, when the maleated rubber is first refluxed over molecular sieves and the reaction purged with N2. Without pretreatment of the rubber and N2 purging, a lower labeling yield (0.036 mmol dye/g) is obtained and the labeled product tends to undergo crosslinking at 240 °C and subsequent dye detachment when the crosslinked gel is hydrolyzed. LSCFM studies reveal HY‐labeled EBR to be completely miscible and evenly dispersed in the unlabeled EBR‐9 of model TPO blends. Moreover, the HY‐labeled EBR provides good fluorescence contrast between the IM droplets and the PP matrix in the TPO blend PP/EBR (80/20) (w/w) + 3 wt % labeled polymer with respect to EBR. Imaging of IM droplets down to 40 μm below the film surface of this blend has been demonstrated. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 239–252, 2001  相似文献   

7.
The characterization of the mechanical nonlinear behavior of isotactic polypropylene/ethylene‐1‐hexene copolymer blends with various kinds of morphology was carried out using a nonlinear constitutive equation in which the plastic deformation and the anharmonicity of elastic response are taken into account. It was found that the mechanical nonlinearity of the incompatible blends showing phase separation is much greater than that of the compatible blends having rubbery components in the interlamellar regions. Moreover, the mechanical behavior is governed by the plastic deformation for the incompatible blends, whereas the anharmonicity strongly affects the mechanical behavior for the compatible blends. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1513–1521, 1999  相似文献   

8.
Temperature dependency of crystalline lamellar thickness during crystallization and subsequent melting in isotactic polypropylene crystallized from both quiescent molten state and stress‐induced localized melt was investigated using small angle X‐ray scattering technique. Both cases yield well‐defined crystallization lines where inverse lamellar thickness is linearly dependent on crystallization temperature with the stretching‐induced crystallization line shifted slightly to smaller thickness direction than the isothermal crystallization one indicating both crystallization processes being mediated a mesomorphic phase. However, crystallites obtained via different routes (quiescent melt or stress‐induced localized melt) show different melting behaviors. The one from isothermal crystallization melted directly without significant changing in lamellar thickness yielding well‐defined melting line whereas stress‐induced crystallites followed a recrystallization line. Such results can be associated with the different extent of stabilization of crystallites obtained through different crystallization routes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 957–963  相似文献   

9.
The stretching‐induced phase transition from tetragonal Form II to hexagonal Form I and the evolution of corresponding crystallite orientation were studied for the butene‐1/ethylene random copolymer with 1.5 mol % ethylene by using a combination of tensile test and in situ wide‐angle X‐ray diffraction. Three orientation pathways were distinguished for II‐I phase transition, including phase transition accomplishing within off‐axis oriented crystallites (Orientation Pathway 1), phase transition with simultaneous formation of highly oriented crystallites (Orientation Pathway 2), and phase transition occurring within the highly oriented crystallites already formed (Orientation Pathway 3). The kinetics of II‐I transition was correlated with the macroscopic mechanical response, which exhibits a strong dependence on orientation. In Orientation Pathway 1, the triggering of phase transition corresponds to the mechanical yielding. More interestingly, the kinetics of transition exhibits the identical dependence on stress. However, in Orientation Pathways 2 and 3, appearance of the highly oriented crystallites substantially alters transition kinetics, which is tentatively associated with the stress bearing by interstack tie chains. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 116–126  相似文献   

10.
The effects of nucleating agents (NAs) on fracture toughness of injection‐molded isotactic poly(propylene)/ethylene‐propylene‐diene terpolymer (PP/EPDM) were studied in this work. Compared with PP/EPDM blends without any NA, PP/EPDM/NA blends show very small and homogeneous PP spherulites. As we expected, PP/EPDM blends nucleated with β‐phase NA aryl amides compound (TMB‐5) present not only a significant enhancement in toughness but also a promotion of brittle‐ductile transition. However, the addition of α‐phase NA 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) has no apparent effect on the toughness of the blends. The impact‐fractured surface morphologies of such samples were analyzed via scanning electronic microscope (SEM). More detail work about the toughening mechanisms of elastomer and NA based on elastomer particles size and matrix crystal structures were carried out. Our results suggest that, besides the crystal structures of matrix, the elastomer particles size and size distribution plays an important role in controlling the toughening effect of nucleated PP/elastomer blends. The smaller the elastomer particles size and lower the polydispersity, the more apparent the synergistic toughening effect of NA and elastomer is. This investigation provides a fresh insight into the understanding of toughening mechanism of elastomers in PP blends and facilitates to the design of super toughened PP materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 46–59, 2009  相似文献   

11.
The compatibilizing effect of polypropylene (PP) grafted with hyperbranched polymers (PP–HBP) has been investigated in PP/polyamide‐6 (PA‐6) blends. Because of its high reactivity and diffusitivity, PP–HBP has been shown to be a more effective compatibilizer in decreasing the interfacial tension than the commonly used maleic anhydride–grafted polypropylene (PP–MAH). This article describes the influence of PP–HBP and PP–MAH on the interfacial tension between PP and PA‐6, as measured by the deformed drop‐retraction method (DDRM). Overall, PP–HBP yielded lower interfacial tension values between PP and PA‐6, which resulted in a finer particle size of the secondary phase. The time dependence of the interfacial tension can be monitored by DDRM, enabling evaluation of the diffusitivity and reactivity of the compatibilizer. A model based on particle coarsening has been developed to describe the time dependence of the interfacial tension. This model showed that the diffusitivity and reactivity for PP–HBP was higher than that of PP–MAH. Therefore, PP–HBP has strong potential as a compatibilizer in diffusitivity‐dependant processes such as film coextrusion and fusion bonding. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2069–2077, 1999  相似文献   

12.
In the present work, α‐form nucleating agent 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) is introduced into the blends of polypropylene/ethylene–octene copolymer (PP/POE) blends to study the effect of the nucleating agent on the toughness of PP/POE blends through affecting the crystallization behavior of PP matrix. Compared with the PP/POE blends, in which the toughness of the blends increases gradually with the increasing content of POE and only a weak transition in toughness is observed, addition of 0.2 wt % DMDBS induces not only the definitely brittle‐ductile transition at low POE content but also the enhancement of toughness and tensile strength of the blends simultaneously. Study on the morphologies of impact‐fractured surfaces suggests that the addition of a few amounts of DMDBS increases the degree of plastic deformation of sample during the fracture process. WAXD results suggest that POE induces the formation of the β‐form crystalline of PP; however, DMDBS prevents the formation of it. SEM results show that the addition of DMDBS does not affect the dispersion and phase morphologies of POE particles in PP matrix. DSC and POM results show that, although POE acts as a nucleating agent for PP crystallization and which enhances the crystallization temperature of PP and decreases the spherulites size of PP slightly, DMDBS induces the enhancement of the crystallization temperature of PP and the decrease of spherulites size of PP more greatly. It is concluded that the definitely brittle–ductile transition behavior during the impact process and the great improvement of toughness of the blends are attributed to the sharp decrease of PP spherulites size and their homogeneous distribution obtained by the addition of nucleating agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 577–588, 2008  相似文献   

13.
Previous work showed that there was a synergistic effect of nucleating agent (NA) and elastomer in improving the fracture resistance of isotactic polypropylene (PP), relating to the formation of large amounts of β‐PP (β‐NA nucleated system) or the decrease of the spherulites diameters of α‐PP (α‐NA nucleated system). To find the direct relation between the synergistic efficiency of NA/elastomer and the microstructures of the materials, in this work, the ethylene‐propylene‐diene terpolymer (EPDM) modified PP blends with compounded NAs (β/α) were adopted and the changes of the microstructure and mechanical properties were investigated comparatively. The results showed that, with the adjustment of the mass fraction of compounded NAs, the microstructures of PP matrix including supermolecular structure and the relative fraction of β‐PP (Kβ) change accordingly. Specifically, the Kβ of β‐PP was successfully adjusted in the wide range of 0–78.9%. Consequently, the stiffness and the fracture resistance of the PP/EPDM blends were easily controlled in different degrees. It is believed that this work could provide a guide map for the design and preparation of certain polymer blends satisfying certain requirement. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
New challenges and opportunities for polyolefin blends arise from the recent introduction of olefin block copolymers (OBCs). In this study, the effect of chain blockiness on the miscibility and phase behavior of ethylene‐octene (EO) copolymer blends was studied. Binary blends of two statistical copolymers (EO/EO blends) that differed in comonomer content were compared with blends of an EO with a blocky EO copolymer (EO/OBC blends). The blends were rapidly quenched to retain the phase morphology in the melt and the phase volumes were obtained by atomic force microscopy (AFM). Two EOs of molecular weight about 100 kg/mol were miscible if the difference in octene content was less than about 10 mol % and immiscible if the octene content difference was greater than about 13 mol %. The blocky nature of the OBCs reduced the miscibility and broadened the partial miscibility window of the EO/OBC blends compared with the EO/EO blends. The EO/OBC blends were miscible if the octene content difference was less than 7 mol % and immiscible above 13 mol % octene content difference. It was also found that the phase behavior of EO/OBC blends strongly depended on blend composition even for constituent polymers of about the same molecular weight. Significantly more demixing was observed in an OBC‐rich blend (EO/OBC 30/70 v/v) than in an OBC‐poor blend (EO/OBC 70/30 v/v). An interpretation based on extractable fractions of the OBC described the major features of the EO/OBC (30/70 v/v) blends. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1554–1572, 2009  相似文献   

15.
Polypropylene (PP)/organo‐montmorillonite (Org‐MMT) nanocomposites toughened with maleated styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) were prepared via melt compounding. The structure, mechanical properties, and dynamic mechanical properties of PP/SEBS‐g‐MA blends and their nanocomposites were investigated by X‐ray diffraction (XRD), polarizing optical microscopy (POM), tensile, and impact tests. XRD traces showed that Org‐MMT promoted the formation of β‐phase PP. The degree of crystallinity of PP/SEBS‐g‐MA blends and their nanocomposites were determined from the wide angle X‐ray diffraction via profile fitting method. POM experiments revealed that Org‐MMT particles served as nucleating sites, resulting in a decrease of the spherulite size. The essential work of fracture approach was used to evaluate the tensile fracture toughness of the nanocomposites toughened with elastomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3112–3126, 2005  相似文献   

16.
Compatibilization of polystyrene/polypropylene (PS/PP) blends, by use of a series of butadiene–styrene block copolymers was studied by means of small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM). The compatibilizers used differ in molar mass and the number of blocks. It was shown that the ability of a block copolymer (BC) to participate in the formation of an interfacial layer (and hence in compatibilization) is closely associated with the molar mass of styrene blocks. If the styrene blocks are long enough to form entanglements with the styrene homopolymer in the melt, then the BC is trapped inside this phase of the PS/PP blends, and its migration to the PS/PP interface is difficult. In this case, the BC does not participate in the formation of the interfacial layer nor, consequently, in the compatibilization process. On the other hand, the BC's with the molar mass of the PS blocks below the critical value are proved to be localized at the PS/PP interface. This preferable entrapping of some styrene–butadiene BC's in the PS phase of the PS/PP blend is, of course, connected to the differing miscibility of the BC blocks with corresponding components of this blend. Although the styrene block is chemically identical to the styrene homopolymer in the blend, the butadiene block is similar to the PP phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1647–1656, 1999  相似文献   

17.
In order to develop PP (polypropylene)‐based blends with balanced toughness and rigidity, the poly‐blends of PP/PC (polycarbonate)/POE (ethylene–octene copolymer) were prepared by applying styrene–ethylene–propylene–styrene (SEPS) as the macromolecular compatibilizer. The compatibilizing effect was studied in terms of the mechanical, morphologies and thermal properties, and the compatibilized PP‐based blends presented remarkable improvement in impact toughness and balanced tensile strength due to the formed special morphology structure. Additionally, by preparing the pre‐blend of PC/SEPS, the melt viscosity of the PP matrix can match that of the dispersed phase PC and POE, which led to a further improvement in the mechanical property of the blends. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of the copolymer microstructure on the morphology evolution in polyethylene/poly(ethylene‐co‐α‐olefin) blends were investigated. Microscopy revealed that the melt‐phase morphology, inferred from the solid‐state morphologies of annealed and quenched samples, was strongly affected by the copolymer structure, that is, the branch content and branch length. Higher molecular weight α‐olefin comonomer residues and residue contents in the copolymers led to faster coarsening of the morphology. The molecular weight of the polyethylene and the copolymers affected the coarsening rates of the morphology, principally through its influence on the melt viscosity. The effects of the molecular weight were largely explained by the normalization of the coarsening rate data with respect to the thermal energy and zero‐shear‐rate viscosity. Thus, the effect of the molecular weight on the compatibility of the blends was much smaller than the effects of the branch length and branch number. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 965–973, 2004  相似文献   

19.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

20.
The effects of maleated thermoplastic elastomer (TPEg) on morphological development of polypropylene (PP)/polyamide 6 (PA6) blends with a fixed PA6 content (30 wt %) were investigated. For purpose of comparison, nonmaleated thermoplastic elastomer (TPE) was also added to the above binary blends. A comparative study of FTIR spectroscopy in above both ternary blends confirmed the formation of in situ graft copolymer in the PP/PA6/TPEg blend. Dynamic mechanical analysis (DMA) indicated that un‐like TPE, the incorporation of TPEg remarkably affected both intensity and position of loss peaks of blend components. Scanning electron microscopy (SEM) demonstrated that PP/PA6/TPE blends still exhibited poor interfacial adhesion between the dispersed phase and matrix. However, the use of TPEg induced a finer dispersion and promoted interfacial adhesion. Transmission electron microscopy (TEM) for PP/PA6/TPEg blends showed that a core‐shell structure consisting of PA6 particles encapsulated by an interlayer was formed in PP matrix. With the concentration of TPEg increasing, the dispersed core‐shell particles morphology was found to transform from discrete acorn‐type particles to agglomerate with increasing degree of encapsulation. The modified Harkin's equation was applied to illustrate the evolution of morphology with TPEg concentration. “Droplet‐sandwiched experiments” further confirmed the encapsulation morphology in PP/PA6/TPEg blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1050–1061, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号