首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.  相似文献   

2.
Lipoamino acids (LAA) are useful promoieties to modify physicochemical properties of drugs, namely lipophilicity and amphiphilicity. The resulting membrane-like character of drug-LAA conjugates can increase the absorption profile of drugs through cell membranes and biological barriers. To show the role of amphiphilicity with respect to lipophilicity in the interaction of drugs with biomembranes, in the present study we evaluated the mode of such an interaction of lipophilic conjugates of LAA with the antioxidant drug idebenone (IDE). DSC analysis and transfer kinetic studies were carried out using dimyristoylphosphatidylcholine (DMPC) multilamellar liposomes (MLVs) as a model. For comparison, two esters of IDE with alkanoic acids were synthesized and included in the analysis. The experimental results indicate that based on their different structure, IDE-LAA conjugates interacted at different levels with respect to pure IDE with DMPC bilayers. In particular, a progressive penetration inside the vesicles was observed upon incubation of IDE-LAA compounds with empty liposomes. The enhanced amphiphilicity of the drug due to the LAA moieties caused more complex interactions with DMPC bilayers, compared to those registered with the native drug or IDE alkanoate esters.  相似文献   

3.
Electrochemistry and biomembranes are interface science in that both are concerned with the phenomena at, as well as across, the interfaces. Membrane electrochemistry may be defined as the application of electrochemistry to biomembrane studies. Additionally, transport processes within the membrane are involved in biomembranes. Since biomembranes are diverse and are usually not amenable to probing by electrochemicophysical techniques, model membrane systems have been developed for their investigation.

The introduction of experimental bilayer lipid membranes (BLM) technique and its modifications have been instrumental in the development and testing of membrane transport concepts (carriers vs channels) and electronic processes in membranes. Instead merely viewing a biomembrane as a physical barrier containing carriers or channels to carry out ionic processes, an ultrathin lipid or biological membrane can also be considered as a complete ‘electrochemical cell’ with one membrane/solution interface reducing (as a cathode) and the other membrane/solution interface oxidizing (as an anode). It is now possible to understand energy transduction (charge generation, separation, and redox reactions) in terms of ultrathin lipid membranes separating two aqueous solutions.

In this paper, we shall discuss the basic principles of electrochemistry as they are applied to membrane studies. Emphasis will be on experimental bilayer lipid membranes (BLM) which have been extensively investigated as models of biomembranes.  相似文献   


4.
Amphipathic surface-active helices enable peripheral proteins to perform a variety of important cellular functions such as: lipid association and transport, membrane perturbation and disruption in programmed cell death or antimicrobial activity, and signal transduction. Amphipathic helices that adopt a surface-active membrane location are also found in transmembrane proteins. Since they possess similar amino acid composition and therefore chemical and physical properties, it seems intuitively obvious that the specific role of these surface seeking, or horizontal helices in membrane spanning proteins in some ways parallel those of their cousins in peripheral proteins. This review compares research literature and data from both proteins sets (peripheral proteins and transmembrane) to examine this assumption. Furthermore, since the occurrence of surface-active/seeking helices in transmembrane protein structure is often omitted from comment in the literature, a brief survey of their apparent roles in transmembrane protein/lipid stabilization, microenvironment enclosure and signal transduction is offered here.  相似文献   

5.
Phenyltin compounds are known to be biologically active and, whan widely spread, are potentially hazardous. As their chemical structure suggests, they interact with the lipid fraction of the cell membrane. Their effect on the model phosphatidylcholine/cholesterol bilayer has been studied using fluorescence and 1H NMR techniques. The change in the fluorescein‐PE fluorescence intensity indicates the amount of charge added by phenyltin compounds to the membrane surface. Although the presence of cholesterol alone does not alter membrane interface properties measured with fluorescein‐PE, 1H NMR measurements show that lipid mobility is altered throughout the hydrophobic core of the membrane. Cholesterol in the phosphatidylcholine bilayer does not alter tetraphenyltin interaction with the membrane, though the effect of diphenyltin dichloride, penetrating deeply into the hydrophobic core of the membrane, is reduced when the amount of cholesterol in the membrane is increased, suggesting decreased compound adsorption. Triphenyltin chloride has a qualitatively different effect on the lipid bilayer, when observed using this fluorescence technique. The adsorption of triphenyltin onto the phosphatidylcholine/cholesterol membrane induces a lateral phase separation of membrane components. Since triphenyltin chloride is known to be adsorbed onto the interface of the lipid bilayer, this separation mechanism must originate in this region and does not seem to be electrostatic in origin. 1H NMR measurements have confirmed the observation that these two active phenyltin compounds interact with the phosphatidylcholine/cholesterol membrane differently, disrupting different regions of the bilayer to a different degree. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Lipophilicity is a very important property of chemical compound taking into consideration in drugs design. Relationships between biological activity, among others lipophilicity, and chemical structure (QSAR) of the compound are very often used by researches. Especially important is the kind of substituents connected to the basic structural fragment and how it changes the lipophilicity of the compound. The aim of this study was to determine the parameters of lipophilicity of quinobenzothiazine derivatives using reversed phase - thin-layer chromatography (RP-TLC), which would enable one to determine the structure–activity relationship. The objective of our work is a series of 15 newly synthetized quinobenzothiazines. They were analyzed by thin-layer chromatography (TLC) with the use of two different mobile phases consisting of methanol or acetone as organic modifiers. For all compounds investigated, the values of lipophilicity obtained from computational method were also determined. Cluster analysis was carried out too for all data of lipophilicity obtained. Low correlation was found between values of experimental lipophilicity and lipophilicity from computational methods for newly synthetized compounds.  相似文献   

7.
2-(2,4-Dihydroxyphenylo)-5,6-dichlorobenzthiazole (dHBBT) is a new drug from the group of chemical compounds characterized by documented antifungal, antibacterial, cytostatic as well as antitumour activity. Despite general knowledge regarding pharmacological importance of dHBBT its interaction to biomembranes has not been investigated. In this work, we present the electronic absorption spectroscopic study on molecular organization of dHBBT in organic solvents and on its localization and molecular organization within model lipid membranes formed with dipalmitoylphosphatidylcholine (DPPC). The spectroscopic measurements are interpreted within the framework of the exciton splitting theory. It is concluded that complex absorption spectrum of dHBBT both in the organic solvents and incorporated to DPPC represents superposition of two spectral forms: representing monomers and hypsochromically shifted spectrum representing molecular dimers. Analysis of the temperature dependencies of the absorption spectra of dHBBT incorporated to DPPC liposomes suggests localization of the drug in the polar head-group region of the membrane or in the region of the polar-nonpolar interface. Linear dichroism measurements of dHBBT incorporated to DPPC multibilayers reveal roughly vertical orientation of the drug molecules with respect to the plane of the membrane. A model is presented of molecular organization of dHBBT in lipid membranes. Potential effects of dHBBT on membrane physical properties is briefly discussed.  相似文献   

8.
Molecular interactions between gemcitabine, alone or conjugated with squalene to form the gem-squalene prodrug, with dimyristoylphosphatidylcholine have been investigated by differential scanning calorimetry and Langmuir film balance techniques to gain information about the interaction of gemcitabine and its prodrug with mammalian cell membranes and to evaluate the potential of liposomes as a delivery system for gemcitabine prodrugs. Phospholipids assembled as multilamellar vesicles or monolayers (at the air water interface) have been used as biomembrane models. Different interactions of gemcitabine, its prodrug, and squalene with the lipid were detected by dispersing the compounds in the MLV and were compared with kinetic experiments carried out to consider the ability of the examined compounds to dissolve in an aqueous medium, to migrate through it, and to be captured by multilamellar vesicles. Their ability to be released from drug-loaded liposomes and be taken up by empty vesicles mimicking biomembranes was also considered. Analysis of the differential scanning calorimetry curves reveals that gemcitabine has very little interaction with multilamellar vesicles whereas the gem-squalene prodrug strongly interacts with multilamellar vesicles. The kinetic experiments suggest that an aqueous medium does not permit the prodrug uptake by the biomembrane models, whereas it is allowed when gem-squalene is gradually released by the liposomes. The molecular area/surface pressure isotherms of the gemcitabine/lipid, gem-squalene/lipid, and pure compound monolayers, in agreement with the calorimetric results, indicate that gem-squalene interacts with the phospholipid monolayer with the squalene moiety in contact with the phospholipid chains and gemcitabine protruding in the aqueous medium.  相似文献   

9.
Scholl  S.  Koch  A.  Henning  D.  Kempter  G.  Kleinpeter  E. 《Structural chemistry》1999,10(5):355-366
The lipophilicity of a representative number of hydantoin derivatives was experimentally determined by RP-HPLC. The stationary phase of RP-HPLC proved a good model to simulate effects of membrane transport. These experimental values were correlated to theoretically estimated lipophilicity values on the basis of global minima structures of the compounds studied. Both these lipophilicity and structure similarities within a proposed pharmacological model for binding the hydantoin derivatives along the sodium channel were classified with respect to their biological activity.  相似文献   

10.
There is a biomedical need to develop molecular recognition systems that selectively target the interfaces of protein and lipid aggregates in biomembranes. This is an extremely challenging problem in supramolecular chemistry because the biological membrane is a complex dynamic assembly of multifarious molecular components with local inhomogeneity. Two simplifying concepts are presented as a framework for basing molecular design strategies. The first generalization is that association of two binding partners in a biomembrane will be dominated by one type of non-covalent interaction which is referred to as the keystone interaction. Structural mutations in membrane proteins that alter the strength of this keystone interaction will likely have a major effect on biological activity and often will be associated with disease. The second generalization is to view the structure of a cell membrane as three spatial regions, that is, the polar membrane surface, the midpolar interfacial region and the non-polar membrane interior. Each region has a distinct dielectric, and the dominating keystone interaction between binding partners will be different. At the highly polar membrane surface, the keystone interactions between charged binding partners are ion-ion and ion-dipole interactions; whereas, ion-dipole and ionic hydrogen bonding are very influential at the mid-polar interfacial region. In the non-polar membrane interior, van der Waals forces and neutral hydrogen bonding are the keystone interactions that often drive molecular association. Selected examples of lipid and transmembrane protein association systems are described to illustrate how the association thermodynamics and kinetics are dominated by these keystone noncovalent interactions.  相似文献   

11.
The activity of a biological compound is dependent both on specific binding to a target receptor and its ADME (Absorption, Distribution, Metabolism, Excretion) properties. A challenge to predict biological activity is to consider both contributions simultaneously in deriving quantitative models. We present a novel approach to derive QSAR models combining similarity analysis of molecular interaction fields (MIFs) with prediction of logP and/or logD. This new classification method is applied to a set of about 100 compounds related to the auxin plant hormone. The classification based on similarity of their interaction fields is more successful for the indole than the phenoxy compounds. The classification of the phenoxy compounds is however improved by taking into account the influence of the logP and/or the logD values on biological activity. With the new combined method, the majority (8 out of 10) of the previously misclassified derivatives of phenoxy acetic acid are classified in accord with their bioassays. The recently determined crystal structure of the auxin-binding protein 1 (ABP1) enabled validation of our approach. The results of docking a few auxin related compounds with different biological activity to ABP1 correlate well with the classification based on similarity of MIFs only. Biological activity is, however, better predicted by a combined similarity of MIFs + logP/logD approach.  相似文献   

12.
《Supramolecular Science》1997,4(3-4):449-453
Four peptide analogues related to the active sequence YIGSR of laminin have been synthesised. The synthesis and chemical characterisation of the peptides are described. Physicochemical properties of these peptides such as surface activity, spreadability, monolayer formation, as well as their interaction with lipid monolayers and bilayers, have been studied by using Langmuir-Blodgett films and liposomes as membrane models. In spite of their good water solubility, these peptides are able to form stable monolayers at the air/water interface and to insert into lipid monolayers. The interaction with bilayers is soft; they are not able to induce the leakage of entrapped CF nor to modify the microviscosity of bilayers in general. Thus in these models electrostatic forces apparently do not play an important role, as we expected previously according to the electrical charge of bilayers, markers and peptides.  相似文献   

13.
Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.  相似文献   

14.
The retention behavior of newly synthesized compounds with antimycotic activity from the 2-(2,4-dihydroxyphenyl)benzothiazole group by high-performance liquid chromatography has been investigated. RP-18 stationary phase and methanol-acetate buffer aqueous mobile phases at pH 4 and 7.4 have been used. In the case of the mobile phase at pH 7.4, higher concentrations of water can be applied than at pH 4. The studied compounds showed regular retention behavior, their log k values decreasing linearly with an increasing concentration of methanol in the mobile phase. On the basis of these relationships, the lipophilicity (log kw), specific hydrophobic surface area (S), and isocratic chromatographic hydrophobicity index (psi0) were determined. Similar log kw values and sensitivity to changes in the structure of compounds studied for both mobile phases have been found. Moderate correlations between the chromatographic parameters and the calculated octanol-water log P values were found. Finally, the lipophilicity parameters were compared with the fungistatic properties of compounds expressed by log MIC (minimum inhibitory concentration) values to find quantitative structure activity relationship equations.  相似文献   

15.
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.  相似文献   

16.
Amphotericin B (AmB) is a well-known antifungal antibiotic that has been used in the clinic for about five decades. Despite its chemotherapeutic importance, AmB is quite toxic and many efforts have been made to improve its pharmacological properties, e.g., by chemical modifications. The lipid membrane is a molecular target for AmB, however, due to heterogeneity of its components, the molecular mechanism of AmB action is still unclear. The lack of this knowledge hinders rational designing of new and less toxic AmB derivatives. Our review is a critical presentation of the current understanding of AmB molecular mechanism of action at the membrane level. Except the experimental approach, the extensive overview of molecular modeling studies, performed mostly in our lab, is presented. The results of interactions between AmB or some of its derivatives and lipid model membranes are discussed. In our studies, different biomembrane models and different associate states of the antibiotic were included. Presented molecular modeling approach is especially valuable with regard to a new paradigm of the structure of lipid membrane containing liquid-ordered domains. Hopefully, all these complementary experimental/computational approaches are going to reach the point at which a new hypothesis about molecular mechanism of AmB activity and selectivity will be put forward.  相似文献   

17.
Phenyltin compounds are known to be biologically active. Their chemical structure suggests that they are likely to interact with the lipid fraction of cell membranes. Using fluorescence and NMR techniques, the effect of phenyltin compounds on selected regions of model lipid bilayers formed from phosphatidylcholine was studied. The polarization of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) dipalmitoyl-L -phosphatidylethanolamine and desorption of praseodymium ions was used to probe the polar region, whereas the polarization of 1 - (4 - trimethylammoniumphenyl) - 6 - phenyl - 1,3,5-hexatriene p-toluenesulfonate measured the hydrophobic core of the membrane. In addition, changes in the N-(5-fluoresceinthiocarbanoly)dipalmitoyl - L - α - phosphatidyl - ethanolamine fluorescence intensity indicated the amount of charge introduced by organotin compounds to the membrane surface. There were no relevant changes of measured parameters when tetraphenyltin was introduced to the vesicle suspension. Diphenyltin chloride causes changes of the hydrophobic region, whereas the triphenyltin chloride seems to adsorb in the headgroup region of the lipid bilayer. When the hemolytic activity of phenyltin compounds was measured, triphenyltin chloride was the most effective whereas diphenyltin chloride was much less effective. Tetraphenyltin causes little damage. Based on the presented data, a correlation between activity of those compounds to hemolysis (and toxicity) and the location of the compound within the lipid bilayer could be proposed. In order to inflict damage on the plasma membrane, the compound has to penetrate the lipid bilayer. Tetraphenyltin does not partition into the lipid fraction; therefore its destructive effect is negligible. The partition of the compound into the lipid phase is not sufficient enough, by itself, to change the structure of the lipid bilayer to a biologically relevant degree. The hemolytic potency seems to be dependent on the location of the compound within the lipid bilayer. Triphenyltin chloride which adsorbs on the surface of the membrane, causes a high level of hemolysis, whereas diphenyltin chloride, which penetrates much deeper, seems to have only limited potency. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Polyenemacrolides such as amphotericin B (AmB) were thought to assemble together and form an ion channel across plasma membranes. Their antimicrobial activity has been accounted for by this assemblage, whose stability and activity are dependent on sterol constituents of lipid bilayer membranes. The structure of this channel-like assemblage formed in biomembranes has been a target of extensive investigations for a long time. For the first step to this goal, we prepared several AmB dimers with various linkers and tested for their channel-forming activity. Among these, AmB dimers that bore an aminoalkyl-dicarboxylate tether covalently linked between amino groups of AmB showed potent hemolytic activity. Furthermore, K+ influx actions monitored by measuring the pH of the liposome lumen by 31P NMR revealed that the dimers formed the molecular assemblage similar to that of AmB in phospholipid membrane. Judging from changes in 31P NMR spectra, the dimers appeared to induce "all-or-none"-type ion flux across the liposome membrane in the presence of ergosterol, which suggested that the ion channel formed by ergosterol/dimer is similar to that of AmB. With these data in hand, we are now trying to elucidate the structure of the ion-channel complex by making the labeled conjugates of AmB for NMR measurements.  相似文献   

19.
A two-step synthesis, with good yields, of d-xylose-based bolaamphiphiles is described. The monolayer properties, the adsorption behavior and membrane destabilization properties of two bolaamphiphiles differing by their spacers (presence or absence of one double bond) were studied. The presence of one unsaturation has no influence on the interfacial organization at low compression but impairs the stability of the monolayer at high compression. Saturated and unsaturated molecules are suggested to adopt a loop structure at the interface at low compression. The higher degree of freedom of the saturated hydrophobic spacer does not affect the initial diffusion step of the bolaform from the subphase to the interface but greatly slows the arrangement step at the interface. However, once at the interface, their surface-active properties are similar. The higher flexibility of the saturated analogue spacer also greatly increases its lipid vesicle destabilizing property. Its rearrangement within the lipid bilayer is in favour of the formation of inverted phases, facilitating membrane fusion.  相似文献   

20.
The toxicity of many amphiphilic compounds may result from their effect on the lipid phase of biological membranes. Upon incorporation such compounds may change the properties of membranes in general and in particular alter the organization of membrane lipids. These changes should affect, among other things, the mechanical properties of membranes. We selected two amphiphilic compounds, diphenyltin dichloride (Ph2SnCl2) and triphenyltin chloride (Ph3SnCl), which are known to be located at different regions of the lipid bilayer and to be toxic. As a model biological membrane the erythrocyte plasma membrane was used. Analysis of the haemolysis kinetics showed differences between the effect of the compound studied on mechanical properties at so‐called non‐lytic concentrations. Diphenyltin dichloride showed a limited effect on erythrocyte haemolysis, whereas triphenyltin chloride affected all the parameters measured (extent of initial haemolysis, extent of final haemolysis and membrane mechanical strength). We correlated these effects with the location of the investigated compounds in liposomes. The presented data show that triphenyltin chloride reduces the erythrocyte plasma membrane mechanical strength and increases the extent of haemolysis under osmotic stress conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号