首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoreactive main chain liquid crystalline polyesters containing oxadiazole and bis(benzylidene)cycloalkanone moieties were synthesized and characterized by structural, thermal, mesomorphic, and optical measurements. The bis(benzylidene) cycloalkanone chromophores in the main chain can constitute both as a mesogen and photoreactive center, whereas 1,3,4‐oxadiazole is a well‐known fluorophore. The thermal properties of polymers were found to be inversely proportional not only to the spacer length but also to ring‐size of cycloalkanones. Hot stage polarized optical microscopic investigations displayed enantiotropic nematic liquid crystalline phases and development of grainy to schlieren textures depends on the length of flexible spacer in the polymer backbone which was in accordance with DSC analysis. Both photoisomerization and photodimerization are observed from the absorption spectra and discussed. The fluorescence spectra in solution state at various concentrations showed that the polymers show blue‐emission maxima and the Stokes shifts being 48–49 nm. The energy transfer occurred when increasing the concentration of the solution. The band gap energies calculated from the absorption spectra are in the range of 3.17–3.41 eV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5760–5775, 2008  相似文献   

2.
A new series of poly(pyridinium salt)s that contained side stilbenyl groups or p‐distirylbenzene segments in the main chain were synthesized from the reactions of bis(pyrylium salts) with diamines. They were characterized by viscometry, Fourier transform infrared spectroscopy, NMR, X‐ray scattering, differential scanning calorimetry, thermomechanical analysis, ultraviolet–visible analysis, and luminescence spectroscopy. The polymers were amorphous and soluble in polar aprotic solvents such as dimethylacetamide, dimethylformamide, and dimethyl sulfoxide. The glass‐transition temperatures were in the range of 59–123 °C. These polymers had initial decomposition temperatures of 240–295 °C and afforded anaerobic char yields of 29–53% at 800 °C. Both the absorption and photoluminescence (PL) spectra of the polymers were studied, and the PL quantum yields in solution were determined. The polymers showed violet‐blue fluorescence in solution with PL maxima at 408–416 nm and violet‐green fluorescence in thin film with PL maxima at 454–523 nm. The structure of the diamine utilized for the preparation of the polymers did not influence their PL maxima. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2454–2462, 2001  相似文献   

3.
A set of new aromatic polyamides containing ether and benzonorbornane units were synthesized by the direct phosphorylation polycondensation of 3,6‐bis(4‐carboxyphenoxy)benzonorbornane with various aromatic diamines. The polymers were produced in high yields and moderate to high inherent viscosities (0.64–1.70 dL/g). The polyamides derived from rigid diamines such as p‐phenylenediamine and benzidine were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and afforded flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 95–101 MPa, elongations at break of 13–25%, and initial moduli of 1.97–2.33 GPa. The amorphous polyamides showed glass‐transition temperatures between 176 and 212 °C (by differential scanning calorimetry) and softening temperatures between 194 and 213 °C (by thermomechanical analysis). Most of the polymers did not show significant weight loss before 450 °C in nitrogen or in air. Some properties of these polyamides were also compared with those of homologous counterparts without the pendent norbornane groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 947–957, 2002  相似文献   

4.
New 1,4‐naphthyl and 2,6‐naphthyl‐containing polyarylates having inherent viscosities up to 1.28 dL/g were synthesized by the high‐temperature solution polycondensation from the acid chloride of 1,4‐bis(4‐carboxyphenoxy)naphthyl or 2,6‐bis(4‐carboxyphenoxy)naphthyl and various bisphenols. Most of the resulting polyarylates showed amorphous characteristics and were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), o‐chlorophenol, and chloroform. Transparent, flexible, and colorless films of these polymers could be cast from the DMAc solutions. Their cast films had tensile strengths ranging from 54.9 to 84.2 MPa, elongations at break from 5.3% to 19.0%, and initial modulus from 2.0 to 2.8 GPa. These polymers had glass transition temperatures in the range of 172–280°C and began to lose weight around 400°C, with 10% weight loss being recorded at about 450°C in air. Dynamic mechanical analysis (DMA) reveals that the polyarylates containing isopropylidene linkages have three transitions on the temperature scale between −100 and 300°C. However, only two transitions were observed in the other polyarylates without isoproylidene linkage. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 645–652, 1999  相似文献   

5.
We describe the preparation, characterization, and luminescence of four novel electrochromic aromatic poly(amine hydrazide)s containing main‐chain triphenylamine units with or without a para‐substituted N,N‐diphenylamino group on the pendent phenyl ring. These polymers were prepared from either 4,4′‐dicarboxy‐4″‐N,N‐diphenylaminotriphenylamine or 4,4′‐dicarboxytriphenylamine and the respective aromatic dihydrazide monomers via a direct phosphorylation polycondensation reaction. All the poly(amine hydrazide)s were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent and flexible films with good mechanical properties. These poly(amine hydrazide)s exhibited strong ultraviolet–visible absorption bands at 346–348 nm in N‐methyl‐2‐pyrrolidone (NMP) solutions. Their photoluminescence spectra in NMP solutions or as cast films showed maximum bands around 508–544 and 448–487 nm in the green and blue region for the two series of polymers. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. All obtained poly(amine hydrazide)s and poly(amine‐1,3,4‐oxadiazole)s exhibited two reversible oxidation redox couples at 0.8 and 1.24 V vs. Ag/AgCl in acetonitrile solution and revealed excellent stability of electrochromic characteristics, changing color from original pale yellow to green and then to blue at electrode potentials of 0.87 and 1.24 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3245–3256, 2005  相似文献   

6.
Novel anthracene‐layered polymers containing fluorescence quenchers such as ferrocene and nitrobenzene units at the polymer termini were designed and synthesized. Their optical properties were investigated in detail. The photoluminescence spectra of the polymers were featureless without vibrational structures, indicating that the anthracenes are effectively interacting each other in a single polymer chain in the excited state. Fluorescence emission from the layered anthracene units was effectively quenched by the aromatic units at the polymer termini owing to energy and electron transfer through a single polymer chain. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2815–2821  相似文献   

7.
Two new poly(phenylene vinylene)s containing m‐terphenyl or 2,6‐diphenylpyridine kinked units along the main chain were synthesized and were used as luminescent and laser materials. They were prepared from Heck coupling of 2,5‐didodecyloxy‐1,4‐divinylbenzene with 4,4″‐dibromo‐3′‐phenyl‐m‐terphenyl or 2,6‐di(4‐bromophenyl)‐4‐phenylpyridine. The kinked units along the main chain caused a partial interruption of the conjugation leading to emission at a shorter wavelength as compared with poly(p‐phenylene vinylene). The polymers presented blue‐green emission in solution and green‐yellow emission in the solid state with photoluminescence maxima at 465–497 and 546–550 nm, respectively. Polymer containing 2,6‐diphenylpyridine segments emitted at a longer wavelength than that containing m‐terphenyl and displayed higher quantum yields in solution (0.61 and 0.40, respectively). The influence of the solvent and polymer concentration on the photoluminescence characteristics was investigated. The photoluminescence properties of protonated polymer containing 2,6‐diphenylpyridine segments were investigated both in solution and in film. Amplified spontaneous emission and tunable laser action were also obtained from the two polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2214–2224, 2004  相似文献   

8.
A series of novel polyamide‐imides III containing 2,6‐bis(phenoxy)naphthalene units were synthesized by 2,6‐bis(4‐aminophenoxy)naphthalene and various bis(trimellitimide)s in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents through direct polycondensation. The polymers were obtained in quantitative yield with inherent viscosities up to 1.53 dL/g. Most of the polymers showed good solubility in NMP, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide and could be solution‐cast into transparent, flexible, and tough films. The films had tensile strengths of 84–111 MPa, elongations at break of 8–33%, and initial moduli of 2.2–2.8 GPa. Wide‐angle X‐ray diffraction revealed that most polymers III were amorphous. The glass‐transition temperatures of some of the polymers could be determined by differential scanning calorimetry traces, recorded at 247–290 °C. The polyamide‐imides exhibited excellent thermal stabilities and had 10% weight loss at temperatures in the range of 501–575 °C under nitrogen atmosphere. They left more than 57% residue even at 800 °C in nitrogen. A comparative study of some corresponding polyamide‐imides is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2591–2601, 2001  相似文献   

9.
New side‐chain cholesteric liquid‐crystalline elastomers containing cholesteryl 4‐allyloxybenzoate as cholesteric mesogenic units and biphenyl 4,4′‐bis(10‐undecen‐1‐ylenate) as smectic crosslinking units were synthesized. The chemical structures of the olefinic compounds and polymers obtained were confirmed by element analysis, Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the concentration of the crosslinking unit on the phase behavior of the elastomers was examined. The elastomers containing less than 17 mol % of the crosslinking units revealed elasticity, reversible mesomorphic phase transition, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the glass‐transition temperature, isotropization temperature, and mesophase temperature ranges decreased with an increasing concentation of the crosslinking unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5262–5270, 2004  相似文献   

10.
Four novel poly(aryl ether)s ( P1 – P4 ) consisting of alternate isolated electron‐transporting (3,3″′‐bis‐trifluoromethyl‐p‐quaterphenyl for P1 , P3 or 3,3″′‐dicyano‐p‐quaterphenyl for P2 , P4 ) and hole‐transporting fluorophores [N‐(2‐ethylhexyl)‐3,6‐bis(styryl)carbazole for P1 , P2 or 9,9‐dihexyl‐2,7‐bis(styryl)fluorene for P3 , P4 ] were synthesized and characterized. These poly(aryl ether)s can be dissolved in organic solvents and exhibited good thermal stability with 5% weight‐loss temperature above 500 °C in nitrogen atmosphere. The photoluminescent (PL) spectra of the films of these polymers showed maximum peaks at around 442–452 nm. The PL spectral results revealed that the emission of polymers was dominated by the fluorophores with longer emissive wavelength via the energy transfer from p‐quaterphenyl to 3,6‐bis(styryl)carbazole or 2,7‐bis(styryl)fluorene segments. Therefore, the p‐quaterphenyl segments function only as the electron‐transporting/hole‐blocking units in these polymers, and the other segments are the emissive centers and hole‐transporting units. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital energy levels of these polymers were measured by cyclic voltammetry. The electron‐donating nitrogen atom on carbazole resulted in the higher HOMO energy levels of P1 and P2 than those of P3 and P4 . The single‐layer light‐emitting diodes (LED) of Al/poly(aryl ether)s ( P1 – P4 )/ITO glass were fabricated. P1 , P2 , and P4 revealed blue electroluminescence, but P3 emitted yellow light as a result of the excimer emission. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2215–2224, 2002  相似文献   

11.
A series of soluble poly(arylene ether)s containing the phenylphosphine oxide moiety were synthesized by the polymerization of substituted oligophenylene diols with bis(fluorophenyl)phenylphosphine oxide. These amorphous polyethers had well‐defined structures and showed blue photoluminescence combined with good thermal stability, especially when phenyl or ethoxy side groups were used. The glass‐transition temperatures increased when the size of the oligophenylene segment increased from three to five rings or when the length of the alkoxy substituents decreased. Polymers with glass‐transition temperatures up to 270 °C were obtained. The absorption and photoluminescent spectra shifted to longer wavelengths with an increase in the oligophenylene block. A redshift was also observed on photoluminescent spectra in the transition from solution to the solid state. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3168–3179, 2001  相似文献   

12.
The polyaddition of bisphenol A diglycidyl ether with bis[4‐(P,P‐diphenylphosphinyloxy)phenyl] sulfone catalyzed by quaternary onium salt, such as tetrabutylammonium chloride afforded a new phosphorus‐containing polyether with good solubility in common organic solvents. Having studied various factors affecting the reaction, such as temperature, catalyst concentration, reaction time, etc., an appropriate polyaddition condition was suggested as using 5 mol % of suitable quaternary ammonium or phosphonium salt in polar solvent at 150°C within 25 h in an ampule for producing high molecular weight polymer. A number of polyethers bearing pendent phosphinate ester groups from the polyaddition of certain bis(epoxide)s and bis(phosphinate)s were synthesized under the above condition and characterized by GPC, IR, and NMR. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1009–1016, 1999  相似文献   

13.
Two new poly(phenylene ethynylene)s with alkoxyphenyl substituents were synthesized and characterized. The polymers were amorphous, dissolved readily in common organic solvents, and showed glass‐transition temperatures at 162–175 °C. They showed blue photoluminescence both in solution and in the solid state due to the steric interaction between the substituents and the main chain that caused an interruption of the conjugation length. The quantum yields in a tetrahydrofuran solution were up to 0.63. Excimer emission was the dominant product of the photoexcitation of thin films of the polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1449–1455, 2002  相似文献   

14.
Liquid‐crystalline, monosubstituted polyacetylenes containing lateral pendants of bis(4‐alkoxyphenyl)terephthalate with no flexible spacers and alkoxy tails {RO, where R is CH3 [P(1)] or C6H13 [P(6)]} were synthesized, and the effects of the backbone structure and alkoxy tails on the properties of the polymers were investigated. The polymerizations of acetylene monomers were carried out with chloronorbornadiene rhodium(I) dimer as a 1,2‐insertion catalyst in toluene. The structures and properties of the monosubstituted polyacetylenes were characterized and evaluated with nuclear magnetic resonance, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, polarized optical microscopy, ultraviolet spectroscopy, and photoluminescence analyses. The molecular weights of the polymers were measured by gel permeation chromatography. The polymer with long tails (p‐hexyloxy), that is, P(6), formed a smectic mesophase upon heating above the melting temperature, but the other one with short tails (p‐methoxy), that is, P(1), could not exhibit liquid crystallinity at elevated temperatures. The steric effect of bulky, liquid‐crystalline mesogens and a direct connection with the main chain prevented the planar conformation of the polyene backbone and, therefore, led to the lower absorption and emission wavelength of the polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2499–2509, 2006  相似文献   

15.
Fluorine‐containing polyethers with pendant hydroxyl groups were synthesized by the polyaddition of fluorine‐containing bis(epoxide)s with certain fluorine‐containing diols with quaternary onium salts as catalysts. When the polyaddition was performed with 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol diglycidiyl ether and 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol, the corresponding polyether with pendant hydroxyl groups was successfully obtained in good yield. The polyaddition of certain fluorine‐containing bis(epoxide)s with diols also proceeded in bulk to provide the corresponding fluorine‐containing polyethers with high molecular weights. These polyethers were highly transparent at 157 nm for 0.1 μm thickness, with their transmittance of 14–75% at 157 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2543–2550, 2004  相似文献   

16.
Ultrahigh‐molecular‐weight linear polyethers were prepared through a reaction between the phenylquinoxaline monomers 2,3‐bis(4‐hydroxyphenyl)‐6‐fluoroquinoxaline and 2,3‐bis(4‐hydroxyphenyl)‐6‐(α,α,α‐trifluoromethyl)quinoxaline and 1,12‐dibromododecane. A new hyperbranched polyether containing a phenylquinoxaline moiety was also prepared from a new self‐polymerizable AB2 monomer, 2,3‐bis(6‐bromohexyloxyphenyl)‐6‐(4‐hydroxyphenyloxy)quinoxaline. All the polyethers were amorphous and soluble in polar aprotic solvents. Their solution‐cast thin films were light yellow, ductile, and optically transparent. The polymers were thermally stable up to 350 °C and had glass‐transition temperatures in the range of 25–83 °C, which depended on the architecture and monomer structure. The monomers and polymers displayed fluorescence maxima in the blue‐light region in the range of 431–449 nm with relatively narrow peak widths; this indicated that they had pure and intense fluorescence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3587–3603, 2004  相似文献   

17.
A new triphenylamine‐containing aromatic diamine, N, N′‐bis(4‐aminophenyl)‐N, N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluoronitrobenzene, followed by catalytic reduction. A series of novel aromatic polyamides with triphenylamine units were prepared from the diamine and various aromatic dicarboxylic acids or their diacid chlorides via the direct phosphorylation polycondensation or low‐temperature solution polycondensation. All the polyamides were amorphous and readily soluble in many organic solvents such as N, N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with relatively high glass‐transition temperatures (257–287 °C), 10% weight‐loss temperatures in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 72%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2810–2818, 2002  相似文献   

18.
5,5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐tetramethyl spirobisindane (TTSBI) was polycondensed with 4,4′‐dichlorodiphenyl sulfone (DCDPS) or with 4,4′‐bis(4‐chlorophenyl sulfonyl) biphenyl (BCSBP) in DMSO. Concentration and feed ratio were optimized to avoid gelation and to obtain a maximum yield of multicyclic polyethers free of functional groups. Regardless of these reaction conditions, only low fractions of perfect multicycles were obtained from DCDPS apparently due to steric hindrance of ring closure. Under the same conditions high fractions of perfect multicycles were achieved with the longer and more flexible DCSBP. The reaction products were characterized by MALDI‐TOF mass spectrometry, 1H‐NMR spectroscopy viscosity, and DSC measurements. Relatively low glass transition temperatures (Tgs ≈ 160–175 °C) were found. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3732–3739, 2008  相似文献   

19.
As majority of polyheteroarylenes based on bis(naphthalic anhydrides), are difficult to process due to their infusiblity and insolubility in common organic solvents and solubility only in strong acids, this study is concerned with the synthesis and properties of new, easily processable polyimides and copolyimides containing naphthalene and oxadiazole rings. These polymers have been synthesized and their properties have been compared with regard to the influence of oxadiazole and naphthalene units on their physical properties. The polyimides were prepared by polycondensation reaction in solution of the aromatic diamines containing preformed oxadiazole ring with two dianhydrides having naphthalene units, at high temperature. Also, copolyimides were prepared by using a mixture of each naphthalene‐containing dianhydride, with hexafluoroisopropylidene‐dianhydride in the polycondensation reaction with the same diamino‐oxadiazoles. Most of the resulting polyimides and copolyimides were soluble in polar amidic solvents and in less polar solvents, and their solutions gave flexible films when spread onto glass plates. The thermal stability and glass transition temperature of these polyimides and copolyimides were measured and compared. The quality and the roughness of the spin‐coated films of these polymers were investigated by atomic force microscopy. The photoluminescence properties of the polymers in solution were studied to determine the color of emission. The UV absorption was also studied to determine the Stokes shift, and hence the possible reabsorption effects. The properties of the present polyimides make them attractive for applications in advanced optoelectronics and other related fields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A series of main chain photoactive liquid crystalline polyethers, containing rigid bisbenzylidene photoactive mesogen and flexible methylene spacers, were synthesized by polycondensation of bisbenzylidene diols and dibromoalkanes. The polyethers were characterized with 1H NMR, gel permeation chromatography (GPC), differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), and polarized light optical microscopy. The individual and combined effects of spacer length and number of methoxy substituents on mesogenic and photoactive properties were investigated. Both first order and second order transition temperatures decreased with increased spacer length and the number of substituents. The combined effect of spacers and substituents drastically reduced the transition temperatures. All monomers and polymers showed mainly the smectic mesophase. In a few cases, nematic droplets along with the smectic phase were observed. The width of the liquid crystalline phase reduced with an increasing number of methoxy substituents on mesogenic unit. Variation of spacer length has a negligible effect on photocycloaddition. However, steric hinderance caused by the substituents decreased the photoactivity as the number of substituents increased. Total energies of crosslinked dimers calculated from modeling studies supported the above findings. Intermolecular photocycloaddition was also confirmed by photoviscosity measurement. The refractive index change was found to be in the range of 0.017–0.031. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2143–2155, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号