首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The free radical copolymerizations of hydroxyethyl methacrylate and tetrahydrofurfuryl methacrylate have been investigated at 50°C. The compositions of polymers prepared at low conversions have been determined using 13C-NMR, and the glass transition temperatures determined by DSC. The copolymerizations were found to be best described by a terminal model with reactivity ratios of rH = 1.79 and rT = 0.76. The triad fraction sequence distributions have been calculated based on the terminal model and the calculated reactivity ratios. The glass transitions have been fitted to the Gordon–Taylor equation. The best value of the Gordon–Taylor constant was found to be kH = 1.42 ± 0.2, indicating nonideal mixing of the two monomer components in the copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3730–3737, 1999  相似文献   

2.
We report the characterization of copolymers of methyl methacrylate (MMA) and 2‐propenoic acid, 2‐methyl‐, 2‐[[[[4‐methyl‐3‐[[(2‐methyl‐4‐nitrophenyl)amino]carbonyl]aminophenyl]carbonyl]oxy]ethyl ester (PAMEE) exhibiting nonlinear optical (NLO) properties. The linear copolymer, poly(MMA‐co‐PAMEE), with a NLO chromophore incorporated into PAMME exhibits a high glass transition temperature of 131°C, as determined by DSC. The thin films of copolymers, which were cast on microscopic glass slides, were optically transparent, and the corona poled polymers produced relatively large and stable second harmonic generation (SHG) signals at room temperature. The nonlinear coefficient d33 of the crosslinked copolymer containing 30 wt % PAMEE was 30.8 pm/V. The SHG signal strength remained unchanged, even after 120 days, and exhibited excellent thermal stability at 65°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1245–1254, 1999  相似文献   

3.
Segmental relaxations in a series of poly(propylene oxide)‐based polyurethane/butyl methacrylate‐triethylene glycol dimethacrylate copolymer interpenetrating networks (IPNs) of various compositions, as compared to those in the pure constituent networks, were studied by an original laser‐interferometric Creep Rate Spectroscopy (CRS) technique. The spectra, obtained over the range from 150 K to 360 K, confirmed the CRS superiority in resolution to generally utilized relaxation spectrometry techniques and allowed to characterize in detail the heterogeneity of segmental dynamics within or near the extraordinarily broad glass transition range in these IPNs. Up to eight creep rate peaks have been registered which were shown to be associated just with the predicted kinds of segmental motions, cooperative and partly‐ or noncooperative; thereby, molecular assignments could be done for these peaks. The relative peak contributions to dynamics around Tg as a function of IPN composition were approximately estimated that provided also some information on nanoscale compositional inhomogeneity of the networks. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 429–441, 1999  相似文献   

4.
Butyl acrylate (BA) and methyl methacrylate (MMA) have been copolymerized in a 3 mol/L benzene solution using 2,2′-azobis(isobutyronitrile) (AIBN) as initiator over a wide composition and conversion range. The overall copolymerization parameter kp/kt1/2 and the composition of the copolymer formed have been measured as a function of conversion. Theoretical values of the coupled parameter kp/kt1/2 calculated from the implicit penultimate unit model and those of cumulative copolymer composition, determined from the Mayo—Lewis terminal model, have been correlated with those experimentally obtained. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1961–1965, 1997  相似文献   

5.
The pyroelectric properties of oriented thin films of ferroelectric Polyamide 11 have been studied in the temperature range of −100°C up to +140°C. The temperature dependence of the experimental pyroelectric coefficient has been analyzed. Three changes of slope of the pyroelectric coefficient are observed at −20, +50, and +100°C. The origin of the lower temperature event has not yet been defined. The upper transition is attributed to chain movements in crystalline regions, and more precisely, to a crystalline phase transition. The intermediate event is close to the glass transition temperature Tg observed by DSC. It is attributed to the manifestation of the glass transition. Below Tg, the variations of the pyroelectric coefficient are very small. For higher temperatures, it increases rapidly, attesting to a major contribution of secondary pyroelectricity and dimensional effects above Tg. The breaking of hydrogen bonds occurring at the glass transition temperature observed on DSC thermograms does not affect pyroelectric properties. Pyroelectric properties are mildly reduced after annealing at temperatures up to +140°C. A comparative study of oriented ferroelectric films prepared by quenching from the melt and nonoriented slowly cooled samples has been carried out by means of DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 715–723, 1999  相似文献   

6.
2-Hydroxyethyl methacrylate (HEMA) and styrene (S) have been copolymerized in a 3 mol · L−1N,N′-dimethylformamide (DMF) solution using 2,2′azobis (isobutyronitrile) (AIBN) as an initiator over a wide composition and conversion range. From low-conversion experiments and 1H-NMR analysis, the monomer reactivity ratios were determined according to the Mayo–Lewis terminal model. The comparison of the obtained results with those previously reported for copolymerization in bulk and in toluene reveals a relatively small but noticeable solvent effect that can be qualitatively explained by the bootstrap model. Cumulative copolymer composition as a function of conversion is satisfactorily described by the integrated Mayo–Lewis equation; overall copolymerization rate increases with increasing the HEMA/S ratio, and individual monomer conversion is closely related to the monomer molar fraction in the feed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2941–2948, 1999  相似文献   

7.
Two dialkyl fumarate monomers were copolymerized with styrene and methyl methacrylate. The reactivity ratios of the monomers were calculated, and the glass transition temperature-composition diagrams for the copolymers were measured. The experimental Tg data of the copolymers were fitted to several empirical equations proposed in the literature. A comparison is made between the copolymers and the blends of the corresponding polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1839–1845, 1999  相似文献   

8.
An improved, simple, and efficient method for the synthesis of lactose‐containing monomer acrylamidolactamine (LAM) has been reported. Free radical copolymerization of this monomer with N‐isopropylacrylamide (NIPAM) in the presence of the crosslinking reagent N,N′‐methylenebisacrylamide (BisA) (1.2 mol %) proceeded smoothly in an aqueous solution using potassium persulfate (KPS) and N,N,N′,N′‐tetramethylethylenediamine (TMEDA) as the initiating system and gave transparent hydrogels. Reactivity ratios were estimated from copolymerization reactions carried out in solution without BisA crosslinker and at low conversion, by using both linearization and nonlinearization methods. They were found to be rLAM = 0.75 and rNIPAM = 1.22. The swelling behavior of the hydrogels was studied by immersion of the hydrogels in deionized water at different temperatures. Equilibrium water uptake was increased when the LAM content was higher than 47 mol %, and reached ≈ 44‐fold with 100 mol % LAM at room temperature. Depending on the composition, the gels showed sharp swelling transitions with small changes in temperature. Differential scanning calorimetry (DSC) was used to characterize the swelling transition and the organization of water in the copolymer hydrogels. The amounts of freezable water in these hydrogels ranged from 81 to 89%, and was not correlated to the content of the sugar monomer. These gels have potential applications as biocompatible materials. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1393–1402, 1999  相似文献   

9.
The radical terpolymerization of tetrafluoroethylene (TFE) with propylene (P) and 4,5,5-trifluoro-4-penten-1-ol (FA3) for the synthesis of fluorinated polymers bearing hydroxy side groups is presented. The polymerization was carried out in emulsion and in a batch operation, initiated by a redox system containing tert-butylperoxybenzoate. The reaction proceeded without any induction period and in a stationary state at low conversion (up to 12%). The presence of the trifluorovinyl hydroxy monomer in the ternary system sharply decreased the polymerization rate, in contrast to that of the TFE/P binary one. The order of the reaction about FA3 was 1.25. The terpolymer compositions were determined by elemental analysis by 1H- and 19F-NMR spectroscopy. An almost equimolar ratio of TFE and P base units in the terpolymer was found, while the FA3 was inserted between TFE/P blocks. The presence of P increased the polymerization rate and lowered the chain transfer coming from FA3 when compared to the TFE/FA3 binary system. Thermal properties were assessed. The glass transition temperatures (Tg) slightly decreased with the FA3 content. The decomposition temperatures were also affected, showing two steps of decomposition related to the amount of FA3 in the copolymer, and is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3991–3999, 1999  相似文献   

10.
The viscoelastic behavior of amorphous ethylene–styrene interpolymers (ESIs) was studied in the glass transition region. The creep behavior at temperatures from 15°C below the glass transition temperature (Tg) to Tg was determined for three amorphous ESIs. These three copolymers with 62, 69, and 72 wt % styrene had glass transition temperatures of 11, 23, and 33°C, respectively, as determined by DMTA at 1 Hz. Time–temperature superposition master curves were constructed from creep curves for each polymer. The temperature dependence of the shift factors was well described by the WLF equation. Using the Tg determined by DMTA at 1 Hz as a reference temperature, C1 and C2 constants for the Williams, Landel, and Ferry (WLF) equation were calculated as approximately 7 and 40 K, respectively. The master curves were used to obtain the retardation time spectrum and the plateau compliance. The entanglement molecular weight obtained from the plateau compliance increased with increasing styrene content as 1,600, 1,870, and 2,040, respectively. The entanglement molecular weight of the ESIs was much closer to that of polyethylene (1,390) than to that of polystyrene (18,700); this was attributed to the unique chain microstructure of these ESIs with no styrene–styrene dyads. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2373–2382, 1999  相似文献   

11.
The enthalpy changes ΔH between a poly(vinyl acetate) glass formed by rapid cooling and the corresponding fully relaxed glass have been estimated at four temperatures below the glass transition. The values obtained were different to those expected by extrapolating liquid behavior below the glass transition and were found to agree well with the predictions of a simple expression for the combined main chain conformational and free volume contributions to enthalpy. Conformational contributions from the side chain alone were also considered but were not required to obtain agreement with experiment. It can be concluded that the side chains remained mobile below the glass transition and do not contribute to the heat capacity discontinuity at Tg. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1107–1116, 1997  相似文献   

12.
This paper discusses the poly(ethylene-co-p-methylstyrene) copolymers prepared by metallocene catalysts, such as Et(Ind)2ZrCl2 and [C5Me4(SiMe2NtBu)]-TiCl2, with constrained ligand geometry. The copolymerization reaction was examined by comonomer reactivity (reactivity ratio and comonomer conversion versus time), copolymer microstructure (DSC and 13C-NMR analyses) and the comparisons between p-methylstyrene and other styrene-derivatives (styrene, o-methylstyrene and m-methylstyrene). The combined experimental results clearly show that p-methylstyrene performs distinctively better than styrene and its derivatives, due to the cationic coordination mechanism and spatially opened catalytic site in metallocene catalysts with constrained ligand geometry. A broad composition range of random poly(ethylene-co-p-methylstyrene)copolymers were prepared with narrow molecular weight and composition distributions. With the increase of p-methylstyrene concentration, poly(ethylene-co-p-ethylstyrene)copolymer shows systematical decrease of melting point and crystallinity and increase of glass transition temperature. At above 10 mol % of p-methylstyrene, the crystallinity of copolymer almost completely disappears. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1017–1029, 1998  相似文献   

13.
In this work europium was used as a spectroscopic probe of the local environment about a lanthanide dopant in a fluorinated copolymer of poly(methyl methacrylate) (PMMA). Fluorination of PMMA was achieved through copolymerization with heptafluorobutyl methacrylate (HFBMA). Samples were characterized for their refractive index, glass transition temperature (Tg), and optical emissions via prism coupling, differential scanning calorimetry, and fluorescence spectroscopy respectively. The refractive index and Tgs were found to decrease linearly with fluorine content. The hypersensitivity ratio, which is defined as the ratio of integrated emission intensity between the 5D07F2 hypersensitive transition and 5D07F1 magnetic dipole transition in Eu3+, was found to decrease by ~60% when the HFBMA copolymer content exceeded about 75% by weight. This implies a change in the local environment about the rare earth dopant that is dependent on the copolymer concentration and is likely due to changes in solubility between the ligand and host environment. The results show that fluorination of PMMA can be useful to tailor refractive index, glass transition, and the spectroscopic properties of active dopants. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1592–1596, 2006  相似文献   

14.
Cationic copolymerization of tetrahydrofuran (THF) with ethylene oxide (EO) in the presence of diols leads to dihydroxy terminated telechelic copolymers. In the present article the influence of copolymerization conditions on the copolymer structure was studied in view of conclusions derived from studies of copolymerization kinetics and mechanism. It was shown that according to established copolymerization mechanism, the number average molecular weights increase linearly with conversion up to Mn ≅ 2500, hydroxyl end groups are bound exclusively to EO units and copolymers are composed of [EO]–[THF]y segments. Microstructure of copolymers may be to some extent regulated by changing reaction conditions. Some physical properties of copolymers also were studied. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3455–3463, 1999  相似文献   

15.
The volume phase transition of poly(NIPAm/MAA) copolymer nanoparticles in buffer solutions at various pH and in aqueous solutions of KCl or ionic surfactants (SDS and DTMAB) was systematically studied using dynamic laser scattering technique. It was found that ionizable MAA groups imparted a responsiveness of the particles to pH and electrolytes. At pH > pKa of the copolymer, electrostatic repulsion of negative charges, mostly from COO groups, was a governing mechanism for preventing the particles from collapse at T > Ttr. The particles exhibited a sharp volume phase transition upon elimination of the negative charges by decreasing the pH of the medium or by the addition of cationic surfactant. At pH < pKa, the presence of MAA groups enhanced the hydrophobicity of the particles as indicated by a lower Ttr and a sharper volume phase transition. A pH 4 buffer at the same ionic strength exhibited the most significant effect on the particle size and phase transition, followed by the ionic surfactant with an opposite charge (e.g., DTMAB), KCl, and finally the ionic surfactant with the same charge (e.g. SDS). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2667–2676, 1999  相似文献   

16.
A thermodynamic simulation of the phase‐separation process of an off‐critical blend, based on a thermoplastic matrix with a reactive epoxy system undergoing polycondensation at a constant temperature, was performed. The model considered the composition dependence of the interaction parameter, χ(T2) (where T is the temperature and Φ2 is the volume fraction of polystyrene), along with the polydispersity of both polymers. For every level of conversion, the simulation provided the amount, composition, stoichiometric ratio, and conversion of each phase present. The accuracy of the model was proved by the good agreement between the experimental and predicted glass‐transition temperatures and heat capacity changes at the glass‐transition temperatures for both phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1361–1368, 2004  相似文献   

17.
The curing process of hexamethylene diisocyanate‐based polyurethane has been monitored by applying FTIR and DSC methods. A general relationship between glass‐transition temperature (Tg) and conversion of curing process has been obtained. This suggests that the reaction path and the relative reaction rates are independent of the curing temperature. The reaction kinetics of the system is analyzed using the Tg data converted to the conversion of the curing process. A set of experimental data and one theoretical model of Tg versus chemical conversion are presented to prove the assumption where a direct one‐to‐one relationship between the Tg (as measured) and the chemical conversion is obtained. Apparent activation energies (Ea) obtained by applying three different methods suggest good agreement. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2213–2220, 2000  相似文献   

18.
Study was made of the cistrans isomerization kinetics of a series of azo compounds in polymethyl methacrylate. It was shown that under ultraviolet irradiation a quantity of cis molecules is formed in the stressed states. The stressed cis molecules' relaxation to equilibrium state takes place at temperatures that are far lower than the glass transition temperature. The influence of the relaxation process on the reverse conversion of cis molecules to the trans molecules was investigated along with the influence of temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1753–1761, 1999  相似文献   

19.
Block, random, and gradient copolymers of styrene (S) and acrylic acid (AA) are synthesized by conventional or controlled radical polymerization, and their glass transition temperature (Tg) behaviors are compared. The location and breadth of the Tgs are determined using derivatives of differential scanning calorimetry heating curves. Each S/AA random copolymer exhibits one narrow Tg, consistent with a single phase of limited compositional nanoheterogeneity. Block copolymers exhibit two narrow Tgs originating from nanophase separation into ordered domains with nearly pure S or nearly pure AA repeat units. Each gradient copolymer exhibits a Tg response with a ~50–56 °C breadth that extends beyond the upper Tg of the block copolymers. For copolymers of similar composition, the maximum value in the gradient copolymer Tg response is consistent with that of a random copolymer, which has an enhanced Tg relative to poly(acrylic acid) due to more effective hydrogen bonding when AA units are separated along the chain backbone by S units. These results indicate that gradient copolymers with ordered nanostructures can be rationally designed, which exhibit broad glass transitions that extend to higher temperature than the Tgs observed with block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2842–2849, 2007  相似文献   

20.
The copolymerization of 2-propenyl isocyanate ( 1 ) with trimethylsilyl methacrylate ( 2 ) has been investigated. 1 is an electron donor monomer with little tendency to undergo homopolymerization, while 2 is an electron acceptor monomer, capable of free radical homopolymerization. Polymerization to low conversion in benzene gave copolymers with preferential incorporation of 2 and a tendency towards alternating copolymers with increasing amounts of 1 in the feed (1 : 1.13 with a 9 : 1 feed ratio of monomers 1 : 2 ). The glass transition temperatures of the amorphous polymers are in the range from 100–70°C, with a Tg of poly(trimethylsilyl methacrylate) being 135°C. Desilylation occurs in the presence of water, causing an exothermal reaction above the glass transition temperature probably with formation of amides, a reaction that can be used for crosslinking. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 611–616, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号