首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self‐assembly and mechanical properties of triblock copolymers in a mid‐block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–Pn BA–PMMA] in two different mid‐block selective solvents, n‐butanol and 2‐ethyl‐1‐hexanol. Gel formation resulting from end‐block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of ?80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear‐rheometry, thermal analysis, and small‐angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end‐blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self‐assembled triblock copolymer gel over a large length scale and wide temperature range. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 877–887  相似文献   

2.
The enzyme‐catalyzed synthesis of poly(p‐ethylphenol) (PEP) has received considerable interest in recent years. Nevertheless, the limited molecular weights restricts its application. In our preliminary research, PEP was modified by copolymerization with polycarbonates through both transesterification at high temperature, and triphosgene at low temperature to form polycarbonate‐co‐poly(p‐ethylphenol) (PC‐co‐PEP). FTIR, NMR, GPC, and thermal analysis verified the formation of PC‐co‐PEP. The copolymers have an optical absorption in the UV range. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 169–178, 1999  相似文献   

3.
The subject of this article is the combined interpretation of intradiffusion and mutual‐diffusion data for polymer–solvent mixtures in terms of integrals over velocity self‐correlation functions and velocity cross‐correlation functions. The combination of mutual‐diffusion, intradiffusion, and activity data allows the evaluation of velocity‐correlation coefficients (VCCs) and distinct‐diffusion coefficients in systems containing one monodisperse solute. This study is the first attempt to extend these approaches to polymers that are polydisperse solutes. Because of the polydispersity, this correlation analysis may become critical for polymers. Its application to polydisperse samples requires the reduction of intradiffusion and mutual‐diffusion coefficients to the same average. After such a reduction, the VCCs and distinct‐diffusion coefficients are evaluated for a homologous series of poly(ethylene glycol)s (PEGs). Attractive PEG–PEG interactions depend on the chain length and concentration of PEG. In this analysis, network formation in PEG–water systems appears to be a smooth process. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 43–51, 2002  相似文献   

4.
As part of our continuing studies concerned with the elucidation of the crosslinking polymerization mechanism leading to interpenetrating polymer network (IPN) formation, in which IPNs consist of both polymethacrylates and polyurethane (PU) networks, this article explores the polyaddition crosslinking reactions of multifunctional poly(methyl methacrylate‐co‐2‐methacryloyloxyethyl isocyanate) [poly(MMA‐co‐MOI)] [MMA/MOI = 90/10] with various diols leading to PU network formation. Thus, the equimolar polyaddition crosslinking reactions of poly(MMA‐co‐MOI) with ethylene glycol (EG), 1,6‐hexane diol, and 1,10‐decane diol (DD) were carried out in N‐methyl pyrrolidone at a 0.25 mol/L isocyanate group concentration at 80 °C. The second‐order rate constants decreased from EG to DD. The deviation of the actual gel point from the theoretical one was smaller from EG to DD. The intrinsic viscosity of resulting prepolymer demonstrated almost no variation with progressing polymerization for the EG system, whereas it gradually increased with conversion for the DD system. Close to the gel point conversion it increased rather drastically for both systems. The swelling ratio of resulting gel was higher from EG to DD. These are discussed mechanistically in terms of the significant occurrence of intramolecular cyclization and intramolecular crosslinking reactions leading to shrinkage of the molecular size. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3243–3248, 2003  相似文献   

5.
To open out new aspects of 9,9‐diarylfluorene (DAF)‐based polymers with high performances, 9,9‐(4‐hydroxyphenyl)‐4,5‐diazafluorene ( N‐BPF ) was designed as a new cardo structure and the properties of poly(ether ketone)s ( N‐PEKs ) containing N‐BPF skeletons were examined in detail. N‐PEKs were synthesized in high yields via polycondensation of N‐BPF with difluoroarenes. N‐PEKs showed cardo polymer‐specific properties such as high thermal stability and high solubility in organic solvents. The addition of p‐toluenesulfonic acid (TsOH) to N‐PEK resulted in the formation of network polymer based on interchain hydrogen bonds. It turned out that the films of network polymer are flexible and transparent and exhibit high refractive index and low birefringence. The effects of feed ratio of TsOH to N‐PEK were also evaluated on the mechanical properties of network polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4541–4549  相似文献   

6.
Two series of tensile tests with constant crosshead speeds (ranging from 5 to 200 mm/min) and tensile relaxation tests (at strains from 0.03 to 0.09) were performed on low‐density polyethylene in the subyield region of deformations at room temperature. Mechanical tests were carried out on nonannealed specimens and on samples annealed for 24 h at the temperatures T = 50, 60, 70, 80, and 100 °C. Constitutive equations were derived for the time‐dependent response of semicrystalline polymers at isothermal deformations with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical crosslinks, and lamellar blocks). The network is thought of as an ensemble of mesoregions linked with each other. The viscoelastic behavior of a polymer is modeled as a thermally induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects sliding of junctions in the network with respect to their reference positions driven by macrostrains. Stress‐strain relations involve five material constants that were found by fitting the observations. Fair agreement was demonstrated between the experimental data and the results of numerical simulation. This study focuses on the effects of strain rate and annealing temperature on the adjustable parameters in the constitutive equations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1638–1655, 2003  相似文献   

7.
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003  相似文献   

8.
Glass‐like and structural first‐order phase transitions are investigated in polytetrafluoroethylene (PTFE) foils and PTFE‐like films prepared by pulsed‐laser deposition (PLD) and plasma polymerization (PP). A structural comparison of the investigated polymers is performed by infrared spectroscopy and dielectric dilatometry. It is shown that dielectric dilatometry (the measurement of the susceptance vs. temperature) provides a simple and elegant means for detecting volumetric transitions in thin nonpolar polymer films. In conventional PTFE foils, the known glass‐like and structural first‐order phase transitions are identified. The structure of pulsed‐laser deposited PTFE strongly depends on the target material, ranging from highly crystalline films showing only structural phase transitions to films strongly deviating from PTFE foils, with structural characteristics comparable to plasma‐polymerized fluorocarbons. The dielectric loss of the highly crystalline PLD films compares favorably with conventional PTFE foils, making the films attractive for new applications in miniature electret devices. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2115–2125, 1999  相似文献   

9.
Dynamic mechanical measurements are reported on two polyethylene copolymers with different types of comonomers and well‐characterized comonomer distributions. Measurements on both isotropic and oriented samples were undertaken over a wide frequency range. The mechanical anisotropy and activation energies of the α and β relaxations are consistent with the former relating to c‐shear in the crystals, and the latter to interlamellar shear. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 51–60, 1999  相似文献   

10.
An investigation into the preparation of poly(9‐alkyl‐9H‐carbazole‐3,6‐diyl)s with palladium catalyzed cross‐coupling reactions of 3‐halo‐6‐halomagnesio‐9‐alkyl‐9H‐carbazoles, generated in situ from their corresponding 3,6‐diiodo‐ and 3,6‐dibromo‐derivatives was undertaken. Monomers with a range of alkyl group substituents with different steric requirements were investigated and their effects on the polymerization were studied. The effects of the nature of halogen substituents on the polymerization reaction were also investigated. Structural analysis of the polymers revealed exclusive 3,6‐linkage between consecutive carbazole repeat units on the polymer chains. The physical properties of these polymers were investigated with spectroscopic, thermal gravimetric analysis, and electrochemical studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6041–6051, 2004  相似文献   

11.
A series of poly(styrene‐block‐ferrocenyldimethylsilane) copolymers (SF) with different relative molar masses of the blocks were prepared by sequential anionic polymerization. The bulk morphology of these polymers, studied by TEM and SAXS, showed well‐ordered lamellar and cylindrical domains as well as disordered micellar structures. Temperature‐dependent rheological measurements exhibited an order–disorder transition for SF 17/8 (the numbers refer to the relative molar masses in 103 g/mol) between 170 and 180°C, and an order–order transition for SF 9/19 between 190 and 200°C. The morphologies of binary blends of the diblocks with homopolymer were also investigated. In the blends the molar mass of the homopolymer was always less than the molar mass of the matching block. Ordered spheres on a bcc lattice and double‐gyroid morphology were observed for the blends. The double‐gyroid morphology was found only in F‐rich diblock/homopolymer systems. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1009–1021, 1999  相似文献   

12.
We investigated the uniaxial deformation behavior of crosslinked low‐density polyethylene in partially and substantially molten states using a real‐time true stress–strain birefringence system. The stress–birefringence behavior exhibits a multiregime behavior during stretching and holding process. The details of this regime behavior are primarily governed by the degree of unmelted crystallinity as it has a dominant role in the long‐range structural connectivity. When the long‐range physical connectivity is present, a three‐regime nonlinear stress–optical behavior was observed. When the long‐range connectivity is substantially eliminated at higher temperatures, the regime I behavior disappears. Structural studies including cooling process reveal that the lower the proportion of molten material during stretching, the higher the concentration of fibrillar structure and the shorter are the lengths of the kebabs that exhibit twisted lamellae after solidification. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1825–1841, 2005  相似文献   

13.
The photochemical and photophysical properties of new polymeric photoinitiators (PPIs) containing pendant thioxanthone (TX) and amine moieties are studied. The PPIs are synthesized by copolymerization of tert‐butyl 2‐((9‐oxo‐9H‐thioxanthen‐2‐yloxy)methyl)acrylate (TX1) with N,N‐dimethylaminoethyl methacrylate (DMAEM) at two different ratios using free radical polymerization. UV–vis spectra indicate that PPIs possess similar absorption characteristics to TX1 in the violet range (~400 nm; absorption red‐shift 20 nm). The photochemical mechanisms are studied by electron spin resonance (ESR), steady state photolysis, laser flash photolysis, and cyclic voltammetry. ESR studies indicate formation of two different aminoalkyl radicals on the hydrogen donor amine. The triplet state of the PPIs is short‐lived compared to isopropyl thioxanthone and TX1, due to the built‐in amine functionality. Photopolymerization of trimethylolpropane triacrylate (TMPTA) initiated by these photoinitiators under LED exposure at 385 and 405 nm using real‐time FTIR spectroscopy shows that they exhibit higher efficiency than TX/N‐methyldiethanolamine (MDEA) and TX1/MDEA systems with the advantage of a much higher molecular weight that can be very helpful to overcome migration issues. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3370–3378  相似文献   

14.
Segment‐segment interaction of poly(methylmethacrylate) in t‐butyl alcohol‐water mixtures in poor solvent regime was studied. From the small‐angle X‐ray scattering measurements of semidilute solution range, the binary and ternary cluster integrals of polymer segments were determined from concentration dependence of the correlation length at various temperatures just above the upper critical solution temperature. We have calculated the contributions of the segment–segment interaction to the entropy and enthalpy from the measured temperature dependence of these interaction parameters and found that both quantities are negative and decrease with decreasing t‐butyl alcohol content. FT‐IR absorption peak of carbonyl group of poly(methylmethacrylate) shifts to the lower frequency with increasing water content. The implications of these findings are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2195–2199, 1999  相似文献   

15.
Dissociation behavior of poly(α‐hydroxy acrylic acid) (PHA) was investigated by potentiometric titration in the presence of NaCl and/or divalent metal chlorides. It was found that pH values of PHA aqueous solutions increased with time when the degree of dissociation, α, is high (α ≧ 0.5 for NaCl system) and decreased in the lower α region (α < 0.5 for NaCl). The increase of pH was attributed to lactone ring formation that occurs between a carboxyl group and a neighbor hydroxyl group upon protonation to the former, and the decrease of pH to an induction effect by lactone ring to −COOH group. The pH‐increasing process was analyzed by assuming it being of a first order to obtain a time constant. On the basis of time constant thus estimated and pKa values for divalent counterion systems, a correlation between counterion binding and lactone ring formation was discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1523–1531, 1999  相似文献   

16.
A series of nucleobased polymers and copolymers were synthesized through atom transfer radical polymerization (ATRP). Biocomplementary DNA‐ and RNA‐like supramolecular complexes are formed in dilute DMSO solution through nucleobase recognition. 1H NMR titration studies of these complexes in CDCl3 indicated that thymine‐adenine (T‐A) and uracil‐adenine (U‐A) complexes form rapidly on the NMR time scale with high association constants (up to 534 and 671 M–1, respectively) and result in significant Tg increase. WAXD and differential scanning calorimetry analyzes in the bulk state indicate the presence of highly physical cross‐linked structures and provide further details into the nature of the self‐assembly of these systems. Furthermore, this study is of discussion on the difference in the hydrogen bond strength between T‐A and U‐A base pairs within polymer systems, indicating that the strength of hydrogen bonds in RNA U‐A pairs is stronger than that in DNA T‐A base pairs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6388–6395, 2009  相似文献   

17.
The process of complex formation and the structure of the complexes were studied for the surfactant binding of the N‐alkylpyridinium chlorides (CnPyCl, n = 12, 16) to the sodium salt of poly(styrenesulfonate) (NaPS) and its copolymer with styrene. Both the NaPS and the amphiphilic copolymer form non‐stoichiometric complexes with an excess of the cationic surfactants. The NaPS‐complex with pronounced short‐range (d1) and long‐range (d2) orderings is insoluble, and the amphiphilic copolymer‐complex is water‐soluble when bound with extra charges. The mechanism of the complex formation was discussed in terms of the charge density and chemical composition of the polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 635–644, 1999  相似文献   

18.
Thiol‐isocyanate‐acrylate ternary networks were formed by the combination of thiol‐isocyanate coupling, thiol‐acrylate Michael addition, and acrylate homopolymerization. This hybrid polymerization reaction sequence was preferentially controlled by using phosphine catalyst systems in combination with photolysis. The reaction kinetics of the phosphine/acrylate thiol‐isocyanate coupling reactions were systematically investigated by evaluating model, small molecule reactions. The thiol‐isocyanate reaction was completed within 1 min while the thiol‐acrylate Michael addition reaction required ~10 min. Both thiol‐isocyanate coupling and thiol‐acrylate Michael addition reactions involving two‐step anionic processes were found to be both quantitative and efficient. However, the thiol‐isocyanate coupling reaction was much more rapid than the thiol‐acrylate Michael addition, promoting initial selectivity of the thiol‐isocyanate reaction in a medium containing thiol, isocyanate, and acrylate functional groups. Films were prepared from thiol‐isocyanate‐acrylate ternary mixtures using 2‐acryloyloxyethylisocyanate and di‐, tri‐, and tetra‐functional thiols. The sequential thiol‐isocyanate, thiol‐acrylate, and acrylate homopolymerization reactions were monitored by infrared spectroscopy during film formation, whereas thermal and mechanical properties of the films were evaluated as a function of the chemical composition following polymerization. The results indicate that the network structures and material properties are tunable over a wide range of properties (Tg ~ 14–100 °C, FWHM ~ 8–46 °C), while maintaining nearly quantitative reactions, simply by controlling the component compositions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3255–3264, 2010  相似文献   

19.
Thermoreversible gelation of polymer chains bearing hydrogen‐bonding functional groups is studied by off‐lattice Monte Carlo simulation with semiflexible bead‐and‐spring model chains. To see the formation of zipper‐like sequential crosslink junctions (domino effect), we introduce stabilization energy ?Δε between the nearest neighboring hydrogen‐bonded beads along a chain in addition to the ordinary pairwise hydrogen‐bond energy ?ε. It is found that the condition / = 2 is fulfilled at the sol/gel transition point, where is the average zipper length, θ the zipper content per chain, and n the total number of beads on a chain. It is also shown that, at low temperature, zipper growth dominates the nucleation of new zippers, and as a result, there is another transition from a three‐dimensional network to a pairwisely bound state (network/pair transition). © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3331–3336, 2005  相似文献   

20.
The conductivity of a single aromatic ring, perpendicular to its plane, is determined using a new strategy under ambient conditions and at room temperature by a combination of molecular assembly, scanning tunneling microscopy (STM) imaging, and STM break junction (STM‐BJ) techniques. The construction of such molecular junctions exploits the formation of highly ordered structures of flat‐oriented mesitylene molecules on Au(111) to enable direct tip/π contacts, a result that is not possible by conventional methods. The measured conductance of Au/π/Au junction is about 0.1 Go , two orders of magnitude higher than the conductance of phenyl rings connected to the electrodes by standard anchoring groups. Our experiments suggest that long‐range ordered structures, which hold the aromatic ring in place and parallel to the surface, are essential to increase probability of the formation of orientation‐controlled molecular junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号