首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used neutron reflectivity to measure the interfacial width in the immiscible system polystyrene/poly(n‐butyl methacrylate) (PS/PnBMA). Measurements were made on the same samples at temperatures ranging from below the glass‐transition temperature (Tg) of PS to slightly above. We observed significant broadening of the interface at temperatures below the Tg of PS, indicating chain mobility below the bulk Tg value. The interfacial width exhibited a plateau at a value of 20 Å in the temperature range of 365 K < T < 377 K. A control experiment involving hydrogenated and deuterated PS films (hPS/dPS) showed no such broadening over the same temperature region. The results are consistent with a reduction of the Tg of PS in the interfacial region of ~20 K. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2664–2670, 2001  相似文献   

2.
The pressure derivatives of the second virial coefficients [dA2/dP; 0.1 ≤ P (MPa) ≤ 35.0] for dilute polystyrene (PS) solutions in good, θ, and poor solvents were measured with static light scattering. The solvent quality improved (dA2/dP > 0) in the good and poor solvents that we investigated (toluene, chloroform; and methylcyclohexane) but deteriorated (dA2/dP < 0) in θ solvents (cyclohexane and 50‐50 cis,trans‐decalin). The effects of temperature [22 < T (°C) < 45] and molecular weight [25 × 103 < weight‐average molecular weight (amu mol?1) < 900 × 103] on dA2/dP for PS/cyclohexane solutions were examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3070–3076, 2003  相似文献   

3.
We measured the cloud-point curves of eight-arm star polystyrene (sPS) in methylcyclohexane (MCH) for polymer samples of three total molecular masses [weight-average molecular weight (Mw) × 10−3 = 77, 215, or 268]. We found a downward shift of 5–15 K in the critical temperature (Tc) of the star polymer solutions with respect to linear polystyrene (PS) solutions of the same Mw. The shift in Tc became smaller as Mw increased. The critical volume fraction for eight-arm sPS in MCH was equal within experimental uncertainty (10–40%) to that of linear PS in MCH. For sPS of Mw = 77,000 in MCH, we studied the mass density (ρ) as a function of temperature (T). As for linear polymers in solution, the difference in ρ between coexisting phases (Δρ) could be described over t = (TcT)/Tc for 1.1 × 10−4 < t < 4.7 × 10−3 with the Ising value of the exponent β in the expression Δρ = B tβ. Both ρ(T) above Tc and the average value of ρ below Tc were linear functions of temperature; no singular corrections were observed. The measurements of the shear viscosity (η) near Tc for sPS (Mw = 74,000) in MCH indicated a strong critical anomaly in η, but the data were not precise enough for a quantitative analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 129–145, 2004  相似文献   

4.
High molecular weight carboxylated polybutadienes (cPBDs) with number-average molecular weight (Mn) from 98,000 to 200,000 and carboxylic acid (COOH) contents of 0.5–10 mol % were successfully synthesized through hydrocarboxylation of polybutadienes (PBDs) at temperatures of 140–150°C using PdCl2(PPh3)2 and SnCl2 · 2H2O catalysts. At low extents of hydrocarboxylation (COOH < 6 mol %), glass transition temperatures (Tg's) of the resulting cPBDs did not change considerably (<10°C). Significant chain scission and crosslinking was not detected during the chemical modification process. Characterization of the microstructures of cPBDs by FTIR, 13C-NMR, and Raman spectroscopy showed that the carboxylic groups were incorporated on the pendant (1,2) PBD double bonds as well as the backbone (1,4) double bonds, indicating the hydrocarboxylation reaction did not solely occur at the terminal carbons of the pendant double bonds. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3129–3138, 1999  相似文献   

5.
The effect of nanoscale confinement on the glass transition temperature, Tg, of freely standing polystyrene (PS) films was determined using the temperature dependence of a fluorescence intensity ratio associated with pyrene dye labeled to the polymer. The ratio of the intensity of the third fluorescence peak to that of the first fluorescence peak in 1-pyrenylmethyl methacrylate-labeled PS (MApyrene-labeled PS) decreased with decreasing temperature, and the intersection of the linear temperature dependences in the rubbery and glassy states yielded the measurement of Tg. The sensitivity of this method to Tg was also shown in bulk, supported PS and poly(isobutyl methacrylate) films. With free-standing PS films, a strong effect of confinement on Tg was evident at thicknesses less than 80–90 nm. For MApyrene-labeled PS with Mn = 701 kg mol−1, a 41-nm-thick film exhibited a 47 K reduction in Tg relative to bulk PS. A strong molecular weight dependence of the Tg-confinement effect was also observed, with a 65-nm-thick free-standing film exhibiting a reduction in Tg relative to bulk PS of 19 K with Mn = 701 kg mol−1 and 31 K with Mn = 1460 kg mol−1. The data are in reasonable agreement with results of Forrest, Dalnoki-Veress, and Dutcher who performed the seminal studies on Tg-confinement effects in free-standing PS films. The utility of self-referencing fluorescence for novel studies of confinement effects in free-standing films is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2754–2764, 2008  相似文献   

6.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   

7.
Symmetric polydisperse (Mw = 23 × 104, Mw/Mn = 2.84) and monodisperse (Mw = 21 × 104, Mw/Mn < 1.05) polystyrene (PS), and asymmetric polydisperse PS/poly(2,6-dimethyl 1,4-phenylene oxide) (PPO) interfaces have been bonded in the vicinity of the glass transition temperature (Tg) of PS. In a lap-shear joint geometry, strength develops in all cases with time to the fourth power, which indicates that it is diffusion controlled. Strength developing at short times at the polydisperse PS/PS interface, at 90°C, is higher than that at the monodisperse interface, at 92°C (at Tg − 13°C in both cases), presumably due to the contribution of the low molecular weight species. The decrease of strength at the PS/PPO interface when the bonding temperature decreases from 113 to 70°C, i.e., from Tg + 10°C to Tg − 33°C of the bulk PS, indicates a high molecular mobility at the surface as compared to that in the bulk, and can be expressed by a classical diffusion equation, which is valid above Tg (of the surface layer). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 567–572, 1998  相似文献   

8.
Peculiarities of structure formation of aqueous LiCl solutions at different salt : water molar ratios (LiCl : n H2O, n = 3.15, 8.05, 14.90) under conditions of isobaric heating (p = 100 bar, T = 298, 323—523 K, T = 50 K) were studied by the method of integral equations. Heating of LiCl : 14.90H2O solution was found to lead to disappearance of tetrahedral ordering of solvent molecules, appreciable weakening of the coordination abilities of both ions, and to an increase of the number of contact ion pairs and a decrease of the number of solvent-separated ion pairs. For the LiCl : 8.05H2O system, the tetrahedral structure of the solvent disappears at a lower temperature and heating has a less pronounced effect on the coordination and associative abilities of the ions. In the LiCl : 3.15H2O solution, tetrahedral ordering of the solvent molecules disappears at 298 K and the number of contact ion pairs decreases as temperature increases. Other structural changes in this system upon heating are similar to those found for the LiCl : 14.90H2O and LiCl : 8.05H2O solutions.  相似文献   

9.
Films of amorphous polystyrene (PS) with a weight-average molecular weight (Mw) of 225 × 103 g/mol were bonded in a T-peel test geometry, and the fracture energy (G) of a PS/PS interface was measured at the ambient temperature as a function of the healing time (th) and healing temperature (Th). G was found to develop with (th)1/2 at Th = Tg-bulk − 33 °C (where Tg-bulk is the glass-transition temperature of the bulk sample), and log G was found to develop with 1/Th at Tg-bulk − 43 °C ≤ ThTg-bulk − 23 °C. The smallest measured value of G = 1.4 J/m2 was at least one order of magnitude larger than the work of adhesion required to reversibly separate the PS surfaces. These three observations indicated that the development of G at the PS/PS interface in the temperature range investigated (<Tg-bulk) was controlled by the diffusion of chain segments feasible above the glass-transition temperature of the interfacial layer, in agreement with our previous findings for fracture stress development at several polymer/polymer interfaces well below Tg-bulk. Close values of G = 8–9 J/m2 were measured for the symmetric interfaces of polydisperse PS [Mw = 225 × 103, weight-average molecular weight/number-average molecular weight (Mw/Mn) = 3] and monodisperse PS (Mw = 200 × 103, Mw/Mn = 1.04) after healing at Th = Tg-bulk − 33 °C for 24 h. This implies that the self-bonding of high-molecular-weight PS at such relatively low temperatures is not governed by polydispersity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1861–1867, 2004  相似文献   

10.
Phase diagrams were studied for (R4N)2[Nd(NO3)5]-C n H2n + 2-chloroform liquid ternaries (where R4N+ is trialkylbenzylammonium and n = 10, 12, 14, or 15) at T = 298.15−333.15 K. (R4N)2[Nd(NO3)5]-C n H2n + 2 binaries are two-phase liquid systems at all temperatures in this range. One phase (phase I) is an almost pure hydrocarbon solvent. The other (phase II) is enriched in (R4N)2[Nd(NO3)5]. The C n H2n + 2 solubility in phase II decreases with increasing the alkyl chain length of the hydrocarbon solvent and increases with increasing temperature. The title liquid ternaries are characterized by a homogeneous solution field and a two-phase liquid solution field. One phase is enriched in (R4N)2[Nd(NO3)5] and chloroform; the other is enriched in the hydrocarbon solvent. Liquid-liquid phase separation fields enlarge with increasing C n H2n + 2 alkyl chain length and slightly narrow with increasing temperature. Critical solution points at fixed temperatures depend on C n H2n + 2. Original Russian Text ? A.K. Pyartman, V.A. Keskinov, P.V. Zaitsev, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 531–534.  相似文献   

11.
Terpolymers composed of Nn‐propylacrylamide (NPAAm), butyl methacrylate (BMA), and N,N‐diethylaminoethyl methacrylate (DEAEMA) were prepared in an attempt to investigate the temperature‐induced phase transition and its mechanism. Poly(NPAAm) showed the lower critical solution temperature (LCST) around 24°C in water. With the incorporation of DEAEMA with NPAAm, the LCST change was characterized by an initial increase. However, the LCST was shifted to the lower temperature at the later stage. This might be explained in terms of hydrophilic/hydrophobic contribution of DEAEMA to the LCST. The swelling behavior of copolymer gel in the various solvents and spin‐lattice relaxation time (T1) study by NMR strongly suggested the hydrophilic/hydrophobic contribution of DEAEMA to the LCST depending on the local environment. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1407–1411, 1999  相似文献   

12.
In order to develop the seeded dispersion polymerization technique for the production of micron-sized monodispersed core/shell composite polymer particles the effect of polymerization temperature on the core/shell morphology was examined. Micron-sized monodispersed composite particles were produced by seeded dispersion polymerizations of styrene with about 1.4-μm-sized monodispersed poly(n-butyl methacrylate) (Pn-BMA) and poly(i-butyl methacrylate) (Pi-BMA) particles in a methanol/water (4/1, w/w) medium in the temperature range from 20 to 90 °C. The composite particles, PBMA/polystyrene (PS) (2/1, w/w), consisting of a PBMA core and a PS shell were produced with 2,2′-azobis(4-methoxy-2,4-dimethyl valeronitrile) initiator at 30 °C for Pn-BMA seed and with 2,2′-azobis(isobutyronitrile) initiator at 60 °C for Pi-BMA seed. The polymerization temperatures were a little above the glass-transition temperatures (T g) of both Pn-BMA (20 °C) and Pi-BMA (40 °C). On the other hand, when the seeded dispersion polymerizations were carried out at much higher temperatures than the T g of the seed polymers, composite particles having a polymeric oil-in-oil structure were produced. Received: 14 October 1998 Accepted in revised form: 2 June 1999  相似文献   

13.
The isothermal structural relaxation (densification) of a family of glassy polynorbornene films with high glass transition temperatures (Tg > 613 K) is assessed via spectroscopic ellipsometry. Three polymers were examined: poly(butylnorbornene) (BuNB), poly(hydroxyhexafluoroisopropyl norbornene) (HFANB), and their random copolymer, BuNB‐r‐HFANB. The effective aging rate, β(T), of thick (∼1.2 μm) spun cast films of BuNB‐r‐HFANB is approximately 10−3 over a wide temperature window (0.49 < T/Tg < 0.68). At higher temperatures, these polymers undergo reactions that more dramatically decrease the film thickness, which prohibits erasing the process history by annealing above Tg. The aging rate for thick BuNB‐r‐HFANB films is independent of the casting solvent, which infers that rapid aging is not associated with residual solvent. β (at 373 K) decreases for films thinner than ∼500 nm. However, the isothermal structural relaxation of thin films of BuNB‐r‐HFANB exhibits nonmonotonic temporal evolution in thickness for films thinner than 115 nm film. The thickness after 18 h of aging at 373 K can be greater than the initial thickness. The rapid aging of these polynorbornene films is attributed to the unusual rapid local dynamics of this class of polymers and demonstrates the potential for unexpected structural relaxations in membranes and thin films of high‐Tg polymers that could impact their performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 53–61  相似文献   

14.
The glass-transition temperatures (Tg's) of nanocomposites of polystyrene (PS) and single-walled carbon nanotubes were measured in the bulk and in thin films with differential scanning calorimetry and spectroscopic ellipsometry, respectively. The bulk Tg of the nanocomposites increased by approximately 3 °C and became much broader than that of PS. For the nanocomposite films thinner than 45 nm, Tg decreased with decreasing film thickness [i.e., ΔTg(nano) < 0]. This phenomenon also occurred in thin PS films, the magnitude of the depression in PS [ΔTg(PS)] being somewhat larger. The film thickness dependence and the differences in the magnitude of ΔTg in the two systems were examined in light of current theory, and a quantitative comparison was made. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3339–3345, 2003  相似文献   

15.
Most procedures for the estimation of critical values of oligomethylenes assume these critical values to depend only on the chain length n and/or the molecular weight M. In this work, we introduce new equations for estimating the critical values by inclusion of quantum chemical data calculated by a semiempirical SCF-MO
  • 1 SCF-MO: Self-consistent field, molecular orbital.
  • method (AM1). These models give a much superior prediction for the critical values such as the normal boiling point Tb, critical temperature Tc, critical pressure Pc, critical valume Vc, surface tension yb and enthalpy of vaporization ΔHvp of 18 oligomethylenes. The predictions for polyethylene (with infinite chain length) for the values of Tb, Tc, Pc, Vc, ΔHvp and yb are 1029.3 K, 1029.3 K, 1.013 bar, 15723.3 m3/mol, 0 KJ/mol and 0 mN/m, respectively.  相似文献   

    16.
    The pressure‐volume‐temperature (PVT) surface of polyamide‐6 (PA‐6) was determined in the range of temperature T = 300–600 K and pressure P = 0.1–190 MPa. The data were analyzed separately for the molten and the noncrystalline phase using the Simha‐Somcynsky (S‐S) equation of state (eos) based on the cell‐hole theory. At Tg(P) ≤ TTm(P), the “solid” state comprises liquid phase with crystals dispersed in it. The PVT behavior of the latter phase was described using Midha‐Nanda‐Simha‐Jain (MNSJ) eos based on the cell theory. The data fitting to these two theories yielded two sets of the Lennard‐Jones interaction parameters: ε*(S‐S) = 34.0 ± 0.3 and ε*(MNSJ) = 22.8 ± 0.3 kJ/mol, whereas v*(S‐S) = 32.00 ± 0.1 and v*(MNSJ) = 27.9 ± 0.2 mL/mol. The raw PVT data were numerically differentiated to obtain the thermal expansion and compressibility coefficients, α and κ, respectively. At constant P, κ followed the same dependence on both sides of the melting zone near Tm. By contrast, α = α(T) dependencies were dramatically different for the solid and molten phase; at T < Tm, α linearly increased with increasing T, then within the melting zone, its value step‐wise decreased, to slowly increase at higher temperatures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 299–313, 2009  相似文献   

    17.
    18.
    The binary interaction energies between styrene and various methacrylates were determined from newly examined phase boundaries with lattice–fluid theory. Because the blends of polystyrene (PS) and poly(cyclohexylmethacrylate) (PCHMA) were only miscible at high molecular weights when the blends were prepared by solution casting from tetrahydrofuran, we examined the miscibility of other blends by changing the molecular weights of PS or methacrylate polymers. On the basis of the phase‐separation temperature caused by the lower critical solution temperature, the miscibility of PS with the various methacrylates appeared to be in the order PCHMA > poly(n‐propyl‐methacrylate) (PnPMA) > poly(ethyl methacrylate) (PEMA) > poly(n‐butyl‐methacrylate) (PnBMA) > poly(iso‐butyl‐methacrylate) > poly(methyl methacrylate) (PMMA) > poly(tert‐butyl methacrylate), and the branching of butylmethacrylate appeared to decrease the miscibility with PS. The interaction energies between PS with various methacrylates obtained from phase boundaries with lattice–fluid theory reached minimum value corresponding to the styrene/n‐propylmethacrylate interaction. They were in the order PnPMA < PEMA < PCHMA < PnBMA < PMMA. The difference in the order of miscibility and interaction energies might be attributed to the terms related to the compressibility. The phase‐separation temperatures calculated with the interaction energies obtained here indicated that the PS/PEMA and PS/PnPMA blends at high molecular weights were miscible, whereas the PS/PnBMA blends were immiscible at high molecular weights. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2666–2677, 2000  相似文献   

    19.
    The present article considers the coil‐to‐globule transition behavior of atactic and syndiotactic poly(methyl methacrylates), (PMMA) in their theta solvent, n‐butyl chloride (nBuCl). Changes in Rh in these polymers with temperature in dilute theta solutions were investigated by dynamic light scattering. The hydrodynamic size of atactic PMMA (a‐PMMA‐1) in nBuCl (Mw: 2.55 × 106 g/mol) decreases to 61% of that in the unperturbed state at 13.0°C. Atactic PMMA (a‐PMMA‐2) with higher molecular weight (Mw: 3.3 × 106 g/mol) shows higher contraction in the same theta solvent (αη = Rh(T)/Rh (θ) = 0.44) at a lower temperature, 7.25°C. Although syndiotactic PMMA (s‐PMMA) has lower molecular weight than that of atactic samples (Mw: 1.2 × 106), a comparable chain collapse was observed (αη = 0.63) at 9.0°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2253–2260, 1999  相似文献   

    20.
    Flory–Huggins interaction parameters (χ) between poly(dimethylsiloxane) (weight‐average molecular weight = 152 kg/mol) and various solvents (methyl ethyl ketone, toluene and n‐octane) were determined as a function of composition and temperature with vapor‐pressure measurements. These data, complemented by independent information for dilute and very concentrated solutions, serve as the basis for a discussion of solvent quality via different theoretical relations. Regardless of polymer concentration, the χ values fall from methyl ethyl ketone via toluene to n‐octane, the ketone being the worst solvent and the hydrocarbon being the best solvent. The variation of χ with composition and temperature is complex. Within the range of moderate polymer concentrations, the influences of composition decrease with increasing solvent quality. Additional effects become noticeable at the ends of the composition scale. The enthalpy parts (χH) and entropy parts (χS) of the Flory–Huggins interaction parameter, obtained from χ(T), vary considerably with composition and change their sign in some cases; these constituents of the Flory–Huggins interaction parameter do not permit a direct assessment of solvent quality. A clear‐cut picture is, however, regained with a comparison of the interdependence of χS and χH. The elimination of explicit concentration influences re‐establishes the order in the solvent quality setup via χ. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 651–662, 2001  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号