首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compatibilizing effect of di‐, tri‐, penta‐, and heptablock (two types) copolymers with styrene and butadiene blocks was studied in polystyrene/polypropylene (PS/PP) 4/1 blends. The structure of PS/PP blends with the addition of 5 or 10 wt % of a block copolymer (BC) was determined on several scale levels by means of transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). The results of the structure analysis were correlated with measured stress‐transfer properties: elongation at break, impact, and tensile strength. Despite the fact that the molar mass of the PS blocks in all the BCs used was about 10,000, that is, below the critical value M* (~18,000) necessary for the formation of entanglements of PS chains, all the BCs used were found to be good compatibilizers. According to TEM, a certain amount of a BC is localized at the interface in all the analyzed samples, and this results in a finer dispersion of the PP particles in the PS matrix, the effect being more pronounced with S‐B‐S triblock and S‐B‐S‐B‐S pentablock copolymers. The addition of these two BCs to the PS/PP blend also has the most pronounced effect on the improvement of mechanical properties of these blends. Hence, these two BCs can be assumed to be better compatibilizers for the PS/PP (4/1) blend than the S‐B diblock as well as both S‐B‐S‐B‐S‐B‐S and B‐S‐B‐S‐B‐S‐B heptablock copolymers. In both types of PS/PP/BC blends (5 or 10 wt % BC), the BC added was distributed between both the PS/PP interface and the PS phase, and, according to SAXS, it maintained a more or less ordered supermolecular structure of neat BCs. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 931–942, 2001  相似文献   

2.
The effect of mixing conditions on the morphology, molten‐state viscoelastic properties, and tensile impact strength of polystyrene/polyethylene (80/20) blends compatibilized with styrene–butadiene block copolymers containing various numbers and lengths of blocks was studied. Under all mixing conditions, an admixture of a styrene–butadiene block copolymer led to a finer phase structure and to an increase in the dynamic viscosity, storage modulus, and tensile impact strength. The effects were stronger for S–B diblock with a short styrene block than for S–B–S–B–S pentablock with long styrene blocks (where S represents styrene and B represents butadiene). For all blends mixed longer than 2 min, the mixing time had only a small effect on their morphology and properties. Surprisingly, the localization of S–B diblock copolymers was strongly dependent on the rate of mixing. The mixing rate had a nonnegligible effect on the viscoelastic properties of the compatibilized blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 609–622, 2003  相似文献   

3.
Poly(butadiene–b–styrene) copolymers containing a pure, 1,4-PB block have been synthesized by a “living” coordination process. The complete hydrogenation of the PB chain leads accordingly to a high-density polyethylene (HDPE) block. The emulsifying efficiency of such a copolymer (H-7) in HDPE/PS blends is compared with that of a previously reported poly(ethylene–butene–b–styrene) copolymer (SE-7) obtained by the PB hydrogenation of an anionically prepared PB–b–PS. Microscopy examinations demonstrate unambiguously the interfacial activity of both copolymers in HDPE/PS blends. The tensile mechanical properties of the blends are significantly but also differently modified by the two emulsifiers. The copolymer H-7 gives rise to the highest strengths, but, contrary to the copolymer SE-7, provides a poor ductility to the blends. This different behavior is assumed to result in part from the different characteristics of the hydrogenated PB blocks. The elastomeric HPB chain of SE-7 should form at the interface a more or less extended soft zone whereas a rigid interface would result from the cocrystallization of the HPB chain of H-7 with the HDPE homopolymer.  相似文献   

4.
The effects of the block length and block number of linear styrene–butadiene (S–B) block copolymers on their compatibilization efficiency in blending polystyrene with polybutadiene were studied. For this purpose, two sets of model S–B copolymers and both homopolymers were prepared by anionic polymerization. Diblocks, triblocks, or pentablocks of S–B copolymers were blended with these homopolymers, and the structures and some end‐use properties of the blends were determined. The supramolecular structure (determined by small‐angle X‐ray scattering), morphology (determined by transmission and scanning electron microscopy), and stress‐transfer characteristics (impact and tensile strengths) of the blends were chosen as criteria for the compatibilization efficiency of the copolymers used. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2612–2623, 2002  相似文献   

5.
In this work, maleic anhydride grafted styrene–ethylene–butadiene–styrene copolymer (SEBS‐g‐MA) and carbon nanotubes (CNTs) were introduced into the immiscible polypropylene/polystyrene (PP/PS) blend. Among the three polymer components, SEBS‐g‐MA has the strongest affinity to CNTs; thus, it exhibits dual effects to adjust the phase morphology of the blends and the dispersion state of CNTs in the blends. The experimental observations obtained from morphology characterizations using scanning electron microscope and transmission electron microscope confirm the selective localization of CNTs at the interface of the immiscible PP/PS blend. As a consequence, largely decreased percolation threshold is achieved when most of CNTs are selectively localized at the interface region between PP and PS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A series of polypropylene (PP)/polystyrene (PS) blends were prepared by solvent blending with PS‐grafted PP copolymers (PP‐g‐PS) having different PS graft chain length as compatibilizers. The interfacial compatibility was significantly improved with increasing PS graft chain length until the interface was saturated at PS graft chain length being 3.29 × 103 g/mol. The blends were foamed by using pressure‐quenching process and supercritical CO2 as the blowing agent. The cell preferentially formed at compatibilized interface because of low energy barrier for nucleation. Combining with the increased interfacial area, the compatibilized interface lead to the foams with increased cell density compared to the uncompatibilized one. The increase in interfacial compatibility also decreased the escape of gas, held more gas for cell growth, and facilitated the increase in expansion ratio of PP/PS blend foams. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1641–1651, 2008  相似文献   

7.
The deformation behavior of blends consisting of a styrene–butadiene star block copolymer and a polystyrene homopolymer was studied by high‐voltage electron microscopy with a tensile device. The mechanical properties and micromechanical deformation mechanisms in the star block copolymer/polystyrene blends were directly influenced by their morphology. Although the pure block copolymer deformed in a very unequal manner (because of a thin‐layer‐yielding mechanism) and revealed no local deformation zones, a transition to the formation of crazelike zones was observed in the blends. This transition in the deformation mechanisms was correlated to the abrupt change in the macroscopic strain at break of the injection‐molded specimens. At lower contents of added polystyrene, a craze‐stopping mechanism was observed, whereas the blends with higher polystyrene contents demonstrated crazing like that in pure polystyrene. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1157–1167, 2003  相似文献   

8.
A series of poly(styrene‐block‐ferrocenyldimethylsilane) copolymers (SF) with different relative molar masses of the blocks were prepared by sequential anionic polymerization. The bulk morphology of these polymers, studied by TEM and SAXS, showed well‐ordered lamellar and cylindrical domains as well as disordered micellar structures. Temperature‐dependent rheological measurements exhibited an order–disorder transition for SF 17/8 (the numbers refer to the relative molar masses in 103 g/mol) between 170 and 180°C, and an order–order transition for SF 9/19 between 190 and 200°C. The morphologies of binary blends of the diblocks with homopolymer were also investigated. In the blends the molar mass of the homopolymer was always less than the molar mass of the matching block. Ordered spheres on a bcc lattice and double‐gyroid morphology were observed for the blends. The double‐gyroid morphology was found only in F‐rich diblock/homopolymer systems. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1009–1021, 1999  相似文献   

9.
The correlation between the morphology and the deformation mechanism in styrene/butadiene block copolymers having modified architecture and in blends with homopolymer polystyrene (hPS) was studied. It was demonstrated that the morphology formation in the block copolymers is highly coupled with their molecular architecture. In particular, the micromechanical behaviour of a star block copolymer and its blends with polystyrene was investigated by using electron microscopy and tensile testing. A homogeneous plastic flow of polystyrene lamellae (thin layer yielding) was observed if the lamella thickness was in the range of 20 nm. The deformation micromechanism switched to the formation of craze-like deformation zones when the average PS lamella thickness changed to about 30 nm and more.  相似文献   

10.
This paper describes the first use of polymer-coated quantum dots (QDs) as fluorescent tracers for LSCFM imaging of phase morphology in polymer blends. Cadmium sulfide (CdS) QDs stabilized at the surface with a PS-b-PAA block copolymer are shown to be well dispersed via their polystyrene (PS) brush layer in the PS phase of solvent-cast 40/60 (w/w) PS/PMMA blends. The QDs are excluded from the PMMA phase, providing excellent fluorescence contrast for LSCFM imaging of the phase-separated blends. The presence of PS-b-PAA-stabilized QDs does not appear to affect the blend morphology, since the observed morphologies are the same when the percentage of QDs within the PS phase is varied from 10 to 50 wt %. These QD fluorescent tracers are used to characterize several aspects of blend morphology in solvent-cast 40/60 PS/PMMA blends containing PS homopolymer with either 100 (low molecular weight) or 1250 (high molecular weight) repeat units. In the PS(1250)/PMMA blends, a percolating distribution of PMMA droplets (2-25 mum) in a PS matrix is observed in the bulk, and a distinct inversion in the continuous phase is found near the glass substrate. In the PS(100)/PMMA blends, a "phase-in-phase" morphology is found, consisting of large PS domains (20-100 mum) dispersed in a PMMA continuous phase and small PMMA domains (1-2 mum) scattered throughout the larger PS droplets. The observed change in blend structure is attributed to a lower interfacial tension for the lower molecular weight PS.  相似文献   

11.
Differential scanning calorimetry (DSC) does not allow for easy determination of the glass‐transition temperature (Tg) of the polystyrene (PS) block in styrene–butadiene–styrene (SBS) block copolymers. Modulated DSC (MDSC), which deconvolutes the standard DSC signal into reversing and nonreversing signals, was used to determine the (Tg) of both the polybutadiene (PB) and PS blocks in SBS. The Tg of the PB block was sharp, at ?92 °C, but that for the PS blocks was extremely broad, from ?60 to 125 °C with a maximum at 68 °C because of blending with PB. PS blocks were found only to exist in a mixed PS–PB phase. This concurred with the results from dynamic mechanical analysis. Annealing did not allow for a segregation of the PS blocks into a pure phase, but allowed for the segregation of the mixed phase into two mixed phases, one that was PB‐rich and the other that was PS‐rich. It is concluded that three phases coexist in SBS: PB, PB‐rich, and PS‐rich phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 276–279, 2005  相似文献   

12.
The phase behaviors of binary blends of poly(styrene‐b‐butadiene) block copolymers were investigated by a small‐angle X‐ray scattering technique. The blends were composed of weakly segregated one in a random micellar phase and the other in a cylindrical phase with similar molecular weights and complementary volume fractions. Morphologies, domain spacings, and order–disorder transition temperatures of the blends indicated that the junctions of the constituent block copolymers share the interface at low temperatures. The domain spacing decreased as temperature increased in a blend with a small amount of the weakly segregated block copolymer. In the cases of the blends with a large amount of the weakly segregated constituent, domain spacing increased with increasing temperature. These results implied that some of the weakly segregated block copolymer moved from the interface to one microdomain at higher temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 470–476  相似文献   

13.
Compatibilization of blends of linear low-density polyethylene (LLDPE) and polystyrene (PS) with block copolymers of styrene (S) and butadiene (B) or hydrogenated butadiene (EB) has been studied. The morphology of the LLDPE/PS (50/50) composition typically with 5% copolymer was characterized primarily by scanning electron microscopy (SEM). The SEB and SEBS copolymers were effective in reducing the PS domain size, while the SB and SBS copolymers were less effective. The noncrystalline copolymers lowered the tensile modulus of the blend by as much as 50%. Modulus calculations based on a coreshell model, with the rubbery copolymer coating the PS particle, predicted that 50% of the rubbery SEBS copolymer was located at the interface compared to only 5–15% of the SB and SBS copolymers. The modulus of blends compatibilized with crystalline, nonrubbery SEB and SEBS copolymers approached Hashin's upper modulus bound. An interconnected interface model was proposed in which the blocks selectively penetrated the LLDPE and PS phases to provide good adhesion and improved stress and strain transfer between the phases. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Silica nanoparticles (17 ± 4 nm in diameter) were modified by grafting polystyrene chains to the surfaces using atom transfer radical polymerization (ATRP). The molecular weight of the grafted chains ranged from 8 to 48 kDa. These modified nanoparticles were mixed in solution with poly(styrene) homopolymer (18–120 kDa) and symmetric poly(styrene‐b‐butadiene) (PS‐PB) diblock copolymer (34–465 kDa) and the states of dispersion in the dried composites were characterized by transmission electron microscopy (TEM). In the so‐called wet brush limit, when the graft molecular weight equals or exceeds the matrix value, the silica particles form a uniform random dispersion in poly(styrene). Increasing the homopolymer matrix, molecular weight above the graft value results in particle clustering and macroscopic‐phase separation. Mixtures of the lamellar forming block copolymer and nanoparticles exhibit a very different trend, with particle clustering at the lower PS‐PB molecular weights and dispersion at the highest value. This latter finding is rationalized on the basis of packing constraints associated with lamellar order and the effective particle dimensions, and the degree of solvation at ordering, both of which favor higher molecular weight block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2284–2299, 2007  相似文献   

15.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   

16.
The stability against the thermal annealing of a cocontinuous two‐phase morphology developed in polystyrene (PS)/low‐density polyethylene (LDPE) blends containing 80 wt % PS was investigated. Blends containing 1, 5, and 10 wt % of a tapered diblock poly(styrene‐block‐hydrogenated butadiene) (P(S‐b‐hB)) or triblock poly(styrene‐block‐hydrogenated butadiene‐block‐styrene) (P(S‐hB‐S)) copolymer were melt‐blended with roll‐mill mixing equipment. The efficiency of each of the two copolymers in stabilizing against coalescence the cocontinuous morphology was examined. The tensile properties of the resulting blends, annealed and nonannealed, were also examined in relation to the morphology induced by thermal annealing. The phase morphology was studied by optical and scanning electron microscopy. With computer‐aided image analysis, it was possible to obtain a measurable characteristic parameter to quantify the cocontinuous phase morphology. When it was necessary, the extraction of one phase with a selective solvent was performed. Although the observed differences were subtle, the tapered diblock exhibited a more efficient compatibilizing activity than the triblock copolymer, particularly at a low concentration of about 2 wt %. The superiority of the tapered diblock over the triblock might be due to its ability to quantitatively locate at the LDPE/PS interface and consequently form a more efficient barrier against the subsequent breakup of the elongated structures of the cocontinuous phase morphology. The tensile properties of the triblock‐modified blends were more sensitive to thermal annealing than the tapered‐modified ones. This deficiency was ascribed to the phase morphology coarsening of the dispersed polyethylene phase. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 202–216, 2003  相似文献   

17.
This study examines how the relative role of coalescence suppression and interfacial tension reduction influence the particle size at various levels of in situ compatibilization. The polymers studied are polyethylene terephthalate (PET) as matrix and a polypropylene (PP) as dispersed phase compatibilized by a triblock copolymer of poly(styrene–hydrogenated butadiene–styrene) (SEBS) grafted with maleic anhydride. The interfacial tension was studied by the breaking‐thread method, and it was used along with the morphology to characterize the emulsification efficacy of the copolymers. By modifying the concentration of MA grafted on the SEBS, different levels of emulsification of the blends were obtained. A comparison of 1/99 and 10/90 PP/PET blends compatibilized by SEBS‐g‐MA allows one to distinguish the relative role of interfacial tension and coalescence suppression in diminishing particle size. It is shown that varying degrees of residual coalescence remain, depending on the level of %MA in the copolymer. A detailed study of the 2%MA system below interfacial saturation was carried out to shed further light on the dependence of coalescence suppression on emulsification level and interfacial coverage. After separating out the contribution of interfacial tension on particle size reduction, it is shown that coalescence suppression for this system increases gradually with areal density of modifier at the interface right up to the region of interfacial saturation. Finally, the interfacial and morphological data were used to test the ability of the Lee and Park model to describe coalescence in polymer blends. Reasonable agreement was found between the parameter c1, describing the coalescence in that model, and the trends related to residual coalescence from this study. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 939–951, 1999  相似文献   

18.
To study the efficiency of different mechanisms for reactive compatibilization of polypropylene/polystyrene blends (PP/PS blends), main chain or terminal-functionalized PP and terminal-functionalized PS have been synthesized by different methods. While the in-situ block and graft copolymer formation results in finer phase morphologies compared to the corresponding non-reactive blends, the morphology development in the ternary blend system PP/PS + HBP (hyperbranched polymer) is a very complex process. HBP with carboxylic acid end groups reacts preferably with the reactive sites of the oxazoline functionalized PS (PS-Ox) and locates mainly within the dispersed PS-Ox phase. A bimodal size distribution of the PS-Ox particles within the oxazoline modified PP (PP-Ox) matrix phase is observed with big PS-Ox particles (containing the HBP as dispersed phase) and small PS-Ox particles similar in size to the unimodal distributed particles in the non-reactive PP-Ox/PS-Ox blends. Factors influencing the morphology are discussed.  相似文献   

19.
The breaking thread and the sessile drop methods have been used to evaluate the interfacial tension between a polypropylene (PP) and a polyethylene-terephthalate (PET). An excellent correlation was found between the two. The breaking thread technique was then used to evaluate the interfacial tension of these blends at various levels of a styrene-ethylene butylene-styrene grafted with maleic anhydride (SEBS-g-MA) compatibilizer. In order to evaluate the relative roles of coalescence and interfacial tension in controlling dispersed phase size reduction during compatibilization, the morphology of PP/PET 1/99 and 10/90 blends compatibilized by a SEBS-g-MA were studied and compared. The samples were prepared in a Brabender mixer. For the 10/90 blend, the addition of the compatibilizer leads to a typical emulsification curve, and a decrease in dispersed phase size of 3.4 times is observed. For the 1/99 blend, a 1.7 times reduction in particle size is observed. In the latter case, this decrease can only be attributed to the decrease of the interfacial tension. It is evident from these results that the drop in particle size for the 10/90 PP/PET blend after compatibilization is almost equally due to diminished coalescence and interfacial tension reduction. These results were corroborated with the interfacial tension data in the presence of the copolymer. A direct relationship between the drop in dispersed phase size for the 1/99 PP/PET blend and the interfacial tension reduction was found for this predominantly shear mixing device. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2271–2280, 1997  相似文献   

20.
This article examines the effects of dispersed phase concentration, processing apparatus, viscosity ratio, and interfacial compatibilization using an SAN–amine compatibilizer on the morphology of blends of bisphenol A–polycarbonate (PC) with styrene–acrylonitrile (SAN) copolymers. For uncompatibilized blends, the dispersed phase particle size increased significantly with SAN concentration, and was found to exhibit a minimum at a viscosity ratio of approximately 0.35 for a fixed concentration of 30% SAN in the blend. Although the morphology of uncompatibilized PC/SAN blends mixed in a Brabender mixer, single‐ and twin‐screw extruders were quite similar, the twin‐screw extruder produced significantly finer morphologies in blends containing SAN–amine. The average particle size for blends compatibilized with the SAN–amine polymer was approximately half that of uncompatibilized blends and was relatively independent of viscosity ratio and dispersed phase composition. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 71–82, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号