首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three unsubstituted cyclic ketene acetals (CKAs), 2-methylene-1,3-dioxolane, 1a , 2-methylene-1,3-dioxane, 2a , and 2-methylene-1,3-dioxepane, 3a , undergo exclusive 1,2-addition polymerization at low temperatures, and only poly(CKAs) are obtained. At higher temperatures, ring-opening polymerization (ROP) can be dominant, and polymers with a mixture of ester units and cyclic ketal units are obtained. When the temperature is raised closer to the ceiling temperature (Tc) of the 1,2-addition propagation reaction, 1,2-addition polymerization becomes reversible and ring-opened units are introduced to the polymer. The ceiling temperature of 1,2-addition polymerization varies with the ring size of the CKAs (lowest for 3a , highest for 2a ). At temperatures below 138°C, 2-methylene-1,3-dioxane, 2a , underwent 1,2-addition polymerization. Insoluble poly(2-methylene-1,3-dioxane) 100% 1,2-addition was obtained. At above 150°C, a soluble polymer was obtained containing a mixture of ring-opened ester units and 1,2-addition cyclic ketal units. 2-Methylene-1,3-dioxolane, 1a , polymerized only by the 1,2-addition route at temperatures below 30°C. At 67–80°C, an insoluble polymer was obtained, which contained mostly 1,2-addition units but small amounts of ester units were detected. At 133°C, a soluble polymer was obtained containing a substantial fraction of ring-opened ester units together with 1,2-addition cyclic ketal units. 2-Methylene-1,3-dioxepane, 3a , underwent partial ROP even at 20°C to give a soluble polymer containing ring-opened ester units and 1,2-addition cyclic ketal units. At −20°C, 3a gave an insoluble polymer with 1,2-addition units exclusively. Several catalysts were able to initiate the ROP of 1a, 2a , and 3a , including RuCl2(PPh3)3, BF3, TiCl4, H2SO4, H2SO4 supported on carbon, (CH3)2CHCOOH, and CH3COOH. The initiation by Lewis acids or protonic acids probably occurs through an initial protonation. The propagation step of the ROP proceeds via an SN2 mechanism. The chain transfer and termination rates become faster at high temperatures, and this may be the primary reason for the low molecular weights (Mn ≤ 103) observed for all ring-opening polymers. The effects of temperature, monomer and initiator concentration, water content, and polymerization time on the polymer structure have been investigated during the Ru(PPh3)3Cl2-initiated polymerization of 2a . High monomer concentrations ([M]/[ln]) increase the molecular weight and decreased the amount of ring-opening. Higher initiator concentrations (Ru(PPh3)3Cl2) and longer reaction times increase molecular weight in high temperature reactions. Successful copolymerization of 2a with hexamethylcyclotrisiloxane was initiated by BF3OEt2. The copolymer obtained displayed a broad molecular weight distribution; M̄n = 6,490, M̄w = 15,100, M̄z = 44,900. This polymer had about 47 mol % of ( Me2SiO ) units, 35 mol % of ring-opened units, and 18 mol % 1,2-addition units of 2a . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3655–3671, 1997  相似文献   

2.
Copolymers of the cyclic ketene acetals, 2-methylene-5,5-dimethyl-1,3-dioxane, 3 , (M1) with 2-methylene-1,3-dioxolane, 4 , (M2) or 2-methylene-1,3-dioxane, 5 , (M2), were synthesized by cationic copolymerization. An experimental method was designed to study the reactivity of these very reactive and extremely acid sensitive cyclic ketene acetal monomers. The reactivity ratios, calculated using a computer program based on a nonlinear minimization algorithm, were r1 = 6.36 and r2 = 1.25 for the copolymerization of 3 with 4 , and r1 = 1.56 and r2 = 1.42 for the copolymerization of 3 with 5. FTIR and 1H-NMR spectra when combined with the values of r1 and r2 showed that these copolymers were formed by a cationic 1,2-polymerization (ring-retained) route. Furthermore the tendency existed to form very short blocks of M1 or M2 within the copolymers. Cationic copolymerization of cyclic ketene acetals have the potential to be used for synthesis of novel polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Pure 1,2-addition polymers, poly(2-methylene-1,3-dioxolane), 1b , poly(2-methylene-1,3-dioxane), 2b , and poly(2-methylene-5,5-dimethyl-1,3-dioxane), 3b , were prepared using the cationic initiators H2SO4, TiCl4, BF3, and also Ru(PPh3)3Cl2. Small ester carbonyl bands in the IR spectra of 1b and 2b were observed when the polymerizations were performed at 80°C ( 1b ) and both 67 and 138°C ( 2b ) using Ru(PPh3)3Cl2. The poly(cyclic ketene acetals) were stable if they were not exposed to acid and water. They were quite thermally stable and did not decompose until 290°C ( 1b ), 240°C ( 2b ), and 294°C ( 3b ). Different chemical shifts for axial and equatorial H and CH3 on the ketal rings were found in the 1H NMR spectrum of 3b at room temperature. High molecular weight 3b (M̄n = 8.68 × 104, M̄w = 1.31 × 105, M̄z = 1.57 × 105) was obtained upon cationic initiation by H2SO4. Poly(2-methylene-1,3-dioxane), 2b , underwent partial hydrolysis when Ru(PPh3)3Cl2 and water were present in the polymer. The hydrolyzed products were 1,3-propanediol and a polymer containing both poly(2-methylene-1,3-dioxane) and polyketene units. The percentages of these two units in the hydrolyzed polymer were about 32% polyketene and 68% poly(2-methylene-1,3-dioxane). No crosslinked or aromatic structures were observed in the hydrolyzed products. The molecular weight of hydrolyzed polymer was M̄n = 5740, M̄w = 7260, and M̄z = 9060. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3707–3716, 1997  相似文献   

4.
5.
Photoinitiated polymerization of 4-methylene-2-phenyl-1,3-dioxolane ( 1 ) was carried out using either tris (4-methylphenyl) sulfonium hexafluoroantimonate or 4-decyloxyphenyl phenyliodonium hexafluoroantimonate as initiators. 1H-NMR analyses confirmed exclusive ring-opening while DSC and SEC were used to determine the glass transition temperatures (Tgs) and molecular weights, respectively. Photoinitiated cationic copolymerizations of 1 were investigated with several acyclic and cyclic monomers. Copolymerization of 1 with vinyl ethers and a spiroorthoester resulted in copolymers whose thermal properties were dependent on comonomer ratios. Copolymers of 1 and dihydrofuran or dihydropyran afforded soluble polymers with Tgs significantly higher than the homopolymer of 1 . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2207–2219, 1997  相似文献   

6.
BF3·OEt2-initiated polymerizations of 2-methylene-1,3-dioxepane gave polymers composed of both ring-retained and ring-opened structures. The ring-opening content increased with an increase in polymerization temperature. Poly(4,7-dimethyl-2-methylene-1,3-dioxepane) propagated slower during BF3·OEt2-initiated polymerization and had a lower ring-opened content than poly(2-methylene-1,3-dioxepane). The type of acid initiator used also affected the amount of ring opening observed. Stronger acids gave less ring opening. Attempted BF3·OEt2-initiated copolymerizations of these seven-membered ring cyclic ketene acetals with isobutyl vinyl ether at room temperature resulted in formation of the two homopolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 873–881, 1998  相似文献   

7.
8.
The stable cyclic ketene acetal, 2-methylene-1,3-dioxepane, 7, has been polymerized cationically in pentane, CH2Cl2 and THF at 25°C to form a polymer which is composed of both ring-opened (40–50%) and ring-retained (50–60%) structures. Initiation was catalyzed by using H2SO4-supported on activated carbon black. This unique outcome differs significantly from the cationic polymerization of several other five- and six-membered ring cyclic ketene acetals which gave 100% 1,2-vinylpolymerization under these conditions. As the polymerization temperature increased in cationic polymerization of 7 the ring-opened content increased and the molecular weight of the polymers decreased in such solvents as cyclohexane, 1,2-dichloroethane, dimethoxyethane, and bis-(2-methoxyethyl) ether. The mechanism of this polymerization is discussed. This research also illustrated the ability to initiate the cationic polymerization of cyclic ketene acetals by acidified carbon black while avoiding subsequent polymer decomposition. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Cationic copolymerizations of 4-methyl-2-methylene-1,3-dioxane, 2 (M1), with 2-methylene-1,3-dioxane, 1 (M2); of 4,4,6-trimethyl-2-methylene-1,3-dioxane, 3 (M1), with 2-methylene-1,3-dioxane, 1 (M2); of 4-methyl-2-methylene-1,3-dioxolane, 5 (M1), with 2-methylene-1,3-dioxolane, 4 (M2); and of 4,5-dimethyl-2-methylene-1,3-dioxolane, 6 (M1), with 2-methylene-1,3-dioxolane, 4 (M2) were conducted. The reactivity ratios for these four types of copolymerizations were r1 = 1.73 and r2 = 0.846; r1 = 2.26 and r2 = 0.310; r1 = 1.28 and r2 = 0.825; r1 = 2.23 and r2 = 0.515, respectively. The relative reactivities of these monomers towards cationic polymerization are: 3 > 2 > 1; and 6 > 5 > 4. With both five- and six-membered ring cyclic ketene acetals, the reactivity increased with increasing methyl substitution on the ring. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 861–871, 1998  相似文献   

10.
11.
12.
The relationship between the relative reactivities of ten cyclic ketene acetals and their structures was determined via cationic copolymerizations of eight different monomer pairs. Thus, 2-methylene-1,3-dioxolane (1) was copolymerized with 2-methylene-4-methyl-1,3-dioxolane (2), 2-methylene-4,5-dimethyl-1,3-dioxolane (3), 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (4), 2-methylene-4-phenyl-1,3-dioxolane (5), and 2-methylene-4-(t-butyl)-1,3-dioxolane (6). Also 2-methylene-1,3-dioxane (7) was copolymerized with 2-methylene-4-methyl-1,3-dioxane (8), 2-methylene-4,4,6-trimethyl-1,3-dioxane (9), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (10). The relative reactivities of these monomers are: 3 > 5 > 4 > 2 > 1 > 6; and 10 > 9 > 8 > 7. In spite of steric demands, substituents at the 4- or 5-positions in 2-methylene-1,3-dioxolane and substituents at the 4- or 6-positions in 2-methylene-1,3-dioxane serve to increase the copolymerization reactivity. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2841–2852, 1999  相似文献   

13.
Copolymerizations of 4-methylene-2-styryl-1,3-dioxolane ( 1 ) and 4-methylene-2-methyl-2-styryl-1,3-dioxolane ( 2 ) with electron-deficient monomers, such as maleic anhydride (MA) and acrylonitrile (AN) were investigated. Only homopolymer of 1 was obtained from the copolymerization of 1 with MA in the presence or absence of AIBN. The copolymerization of 1 and AN with AIBN as initiator gave a copolymer consisting of three kinds of repeating units. Reaction of 2 with MA gave a crystalline product with and without AIBN present. A nine-membered ring structure is proposed for this product based on its IR, UV, proton and 13C-NMR spectra, as well as elemental analysis. No polymer was obtained from the copolymerization of 2 and AN with or without AIBN initiator. Based on the structures of the products obtained from the copolymerization, a number of polymerization mechanisms are proposed. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
15.
Perfluoro-2-methylene-1,3-dioxolane (III) was synthesized and polymerized with an initiator, perfluoro dibenzoyl peroxide, and a white solid product III-P was quantitatively isolated. The polymer was insoluble in organic solvents including fluorinated solvents such as Fluorinert FC 75 and hexafluorobenzene, but dissolved in hexafluorobenzene by heating at around 140 °C in a sealed ampoule. The X-ray measurement showed that III-P was semi-crystalline and melted at 230 °C. The IR spectrum of III-P indicated that the polymer obtained did not show carbonyl peak and it was the vinyl addition product. When the solid product was heated above the melting temperature and pressed under 100-200 kg/cm2, we obtained an amorphous and flexible film, which is transparent from the UV region to the near IR region. The glass transition temperature was 110 °C and refractive indexes were 1.3443, 1.3434 and 1.3373 at 633, 839 and 1544 nm, respectively. The film did not degrade in concentrated sulfuric acid and aqueous sodium hydroxide solutions even heated at 80-90 °C for 2 days. The film was thermally stable and began to decompose at 300 °C under air atmosphere.  相似文献   

16.
4-Methylene-4H-1,3-benzodioxin-2-one (MBDOON), an α-substituted cyclic styrene derivative, was synthesized and polymerized readily with 2,2′-azobis(isobutyronitrile) (AIBN) as an initiator in solution. The kinetics of the MBDOON homopolymerization with AIBN was investigated in N-methyl-2-pyrrolidone (NMP). The rate of polymerization, Rp, can be expressed by Rp ? k[AIBN]0.52[MBDOON]1.1 and the overall activation energy has been calcualted to be 75.7 kJ/mol. Monomer reactivity ratios in copolymerization of MBDOON (M2) with styrene (M1) are r1 = 0.31 and r2 = 3.20, from which Q and e values of MBDOON can be calculated as 3.0 and ?0.7, respectively. Ring-substituted MBDOON monomers such as 6-chloro, 6-methyl, and 7-methoxy derivatives were synthesized and polymerized with AIBN. The 6-substituted MBDOON's readily underwent radical polymerization while the 7-methoxy-MBDOON was slower to polymerize. Poly(MBDOON) is predominantly heterotactic. (rr = 35, mr = 46, and mm = 19%). The polymer releases carbon dioxide at about 200°C and is converted with some depolymerization to poly[(o-hydroxyphenyl)acetylene]. The thermolysis temperature is very much affected by the ring substituent. The onset of carbon dioxide liberation was observed at 140°C in the case of the 7-methoxyl derivative while the 6-substituents had a smaller effect on the decarboxylation temperature. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Cationic polymerization of 1,3-dioxepane (DOP) initiated by triflic acid was carried out in the presence of 2,2-bis(hydroxymethyl)butanol (BHMB). The structure and molecular weight of the products were characterized by GPC and NMR spectra. The results showed that molecular weight of the polyacetal obtained could be controlled by the initial mole ratio of DOP/BHMB. GPC showed that as the mole ratio of BHMB/DOP increased, the content of cyclic oligomers also increased. Proton, 13C and 2D HMQC-fg NMR demonstrated that no hydroxymethyl group of BHMB appeared as an end group. It was also illustrated by proton NMR that some BHMB units existed in cyclic oligomers. The mechanism of formation of cyclic oligomers was discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2899–2903, 1998  相似文献   

18.
Copolymerization of the cyclic ketene acetal 5,6‐benzo‐2‐methylene‐1,3‐dioxepane (BMDO) with methyl methacrylate (MMA) is studied with respect to its copolymerization parameters and the suitability to control BMDO/MMA copolymerizations via the reversible addition‐fragmentation chain transfer (RAFT) technique to obtain linear and 4‐arm star polymers. BMDO shows disparate copolymerization behavior with MMA and r1 = 0.33 ± 0.06 and r2 = 6.0 ± 0.8 have been determined for polymerization at 110 °C in anisole from fitting copolymer composition vs. comonomer feed data to the Lewis–Mayo equation. Copolymerization of the two monomers is successful in RAFT polymerization employing a trithiocarbonate control agent. As desired, polymers contain only little amount of polyester units stemming from BMDO units and preliminary degradation experiment show that the polymer degrades slowly, but steadily in aqueous 1 M NaOH dispersion. Within ten days, the polymers are broken down to low molecular weight segments from an initial molecular weight of Mn = 6000 g mol?1. Star (co)polymerization with an erythritol‐based tetra‐functional RAFT agent following the Z‐group approach proceeds efficiently and polymers with a number‐average molecular weight of 10,000 g mol?1 are readily obtained that degrade in similar manner as the linear copolymer counterparts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1633–1641  相似文献   

19.
The polymerization of o-(1,3-dioxolan-2-yl)phenyl ethyl fumarate (DOPEF) initiated with dimethyl 2,2′-azobisiso-butyrate (MAIB) was studied kinetically in benzene. The polymerization rate (Rp) at 60°C was given by Rp = k [MAIB]0.76 [DOPEF]0.71. The overall activation energy of polymerization was calculated to be 98.3 kJ/mol. The number-average molecular weight of resulting poly(DOPEF) was in the range of 1000–3100. 1H- and 13C-NMR spectra of resulting polymers revealed that the radical polymerization of DOPEF proceeds in a complicated manner involving vinyl addition, intramolecular hydrogen abstraction, and further ring opening of the cyclic acetal at higher temperatures. From the copolymerization of DOPEF (M1) and styrene (St) (M2) at 60°C, the monomer reactivity ratios were obtained to be r1 = 0.02 and r2 = 0.20, the values of which are similar to those of the copolymerization of ethyl o-formylphenyl fumarate and St. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 563–572, 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号