首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop 2‐grid schemes for solving nonlinear reaction‐diffusion systems: where p = (p, q) is an unknown vector‐valued function. The schemes use discretizations based on a mixed finite‐element method. The 2‐grid approach yields iterative procedures for solving the nonlinear discrete equations. The idea is to relegate all the Newton‐like iterations to grids much coarser than the final one, with no loss in order of accuracy. The iterative algorithms examined here extend a method developed earlier for single reaction‐diffusion equations. An application to prepattern formation in mathematical biology illustrates the method's effectiveness. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 589–604, 1999  相似文献   

2.
An artificial‐viscosity finite‐difference scheme is introduced for stabilizing the solutions of advection‐diffusion equations. Although only the linear one‐dimensional case is discussed, the method is easily susceptible to generalization. Some theory and comparisons with other well‐known schemes are carried out. The aim is, however, to explain the construction of the method, rather than considering sophisticated applications. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 581–588, 1999  相似文献   

3.
We develop and analyze a least‐squares finite element method for the steady state, incompressible Navier–Stokes equations, written as a first‐order system involving vorticity as new dependent variable. In contrast to standard L2 least‐squares methods for this system, our approach utilizes discrete negative norms in the least‐squares functional. This allows us to devise efficient preconditioners for the discrete equations, and to establish optimal error estimates under relaxed regularity assumptions. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 237–256, 1999  相似文献   

4.
We present a scheme for solving two‐dimensional, nonlinear reaction‐diffusion equations, using a mixed finite‐element method. To linearize the mixed‐method equations, we use a two grid scheme that relegates all the Newton‐like iterations to a grid ΔH much coarser than the original one Δh, with no loss in order of accuracy so long as the mesh sizes obey . The use of a multigrid‐based solver for the indefinite linear systems that arise at each coarse‐grid iteration, as well as for the similar system that arises on the fine grid, allows for even greater efficiency. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 317–332, 1999  相似文献   

5.
This paper is devoted to the theoretical and numerical study of a method which computes the variability of current and density in an oceanic domain. The equations are of Navier–Stokes type for the velocity and of transport‐diffusion type for the density. They are linearized around a given mean circulation and modified by physical assumptions including hydrostatic approximation. The existence and uniqueness of a solution are proved for two sets of equations: first the three‐dimensional problem and then the two‐dimensional cyclic problem derived by assuming a sinusoïdal x‐dependence for the perturbation of the mean flow. The latter corresponds to a modellization of tropical instability waves which are illustrated by the ‘El Nino’ phenomenon. These two problems differ from classical ones because of hydrostatic approximation, boundary conditions imposed by the oceanic domain and complex‐valued functions for the cyclic case. A numerical model is developed for the two‐dimensional cyclic equations. Time discretization is performed by the characteristics method; space discretization uses Q1 finite elements. Numerical results are presented in a realistic case corresponding to the tropical Pacific Ocean. Copyright © 1999 John Wiley & Sons. Ltd.  相似文献   

6.
We consider a time‐dependent and a stationary convection‐diffusion equation. These equations are approximated by a combined finite element – finite volume method: the diffusion term is discretized by Crouzeix‐Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the nonstationary case, we use an implicit Euler approach for time discretization. This scheme is shown to be L2‐stable uniformly with respect to the diffusion coefficient. In addition, it turns out that stability is unconditional in the time‐dependent case. These results hold if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 402–424, 2012  相似文献   

7.
This study presents a robust modification of Chebyshev ? ‐weighted Crank–Nicolson method for analyzing the sub‐diffusion equations in the Caputo fractional sense. In order to solve the problem, by discretization of the sub‐fractional diffusion equations using Taylor's expansion a linear system of algebraic equations that can be analyzed by numerical methods is presented. Furthermore, consistency, convergence, and stability analysis of the suggested method are discussed. In this framework, compact structures of sub‐diffusion equations are considered as prototype examples. The main advantage of the proposed method is that, it is more efficient in terms of CPU time, computational cost and accuracy in comparing with the existing ones in open literature.  相似文献   

8.
Implicit‐explicit multistep finite element methods for nonlinear convection‐diffusion equations are presented and analyzed. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. The linear part of the equation is discretized implicitly and the nonlinear part of the equation explicitly. The schemes are stable and very efficient. We derive optimal order error estimates. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:93–104, 2001  相似文献   

9.
We prove an optimal‐order error estimate in a degenerate‐diffusion weighted energy norm for bilinear Galerkin finite element methods for two‐dimensional time‐dependent convection‐diffusion equations with degenerate diffusion. In the estimate, the generic constants depend only on certain Sobolev norms of the true solution but not the lower bound of the diffusion. This estimate, combined with a known stability estimate of the true solution of the governing partial differential equations, yields an optimal‐order estimate of the Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right side data. Preliminary numerical experiments were conducted to verify these estimates numerically. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

10.
In this paper we analyze convergence of basic iterative Jacobi and Gauss–Seidel type methods for solving linear systems which result from finite element or finite volume discretization of convection–diffusion equations on unstructured meshes. In general the resulting stiffness matrices are neither M‐matrices nor satisfy a diagonal dominance criterion. We introduce two newmatrix classes and analyse the convergence of the Jacobi and Gauss–Seidel methods for matrices from these classes. A new convergence result for the Jacobi method is proved and negative results for the Gauss–Seidel method are obtained. For a few well‐known discretization methods it is shown that the resulting stiffness matrices fall into the new matrix classes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Incompressible unsteady Navier–Stokes equations in pressure–velocity variables are considered. By use of the implicit and semi‐implicit schemes presented the resulting system of linear equations can be solved by a robust and efficient iterative method. This iterative solver is constructed for the system of linearized Navier–Stokes equations. The Schur complement technique is used. We present a new approach of building a non‐symmetric preconditioner to solve a non‐symmetric problem of convection–diffusion and saddle‐point type. It is shown that handling the differential equations properly results in constructing efficient solvers for the corresponding finite linear algebra systems. The method has good performance for various ranges of viscosity and can be used both for 2D and 3D problems. The analysis of the method is still partly heuristic, however, the mathematically rigorous results are proved for certain cases. The proof is based on energy estimates and basic properties of the underlying partial differential equations. Numerical results are provided. Additionally, a multigrid method for the auxiliary convection–diffusion problem is briefly discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, a new stabilized finite element method is proposed and analyzed for advection‐diffusion‐reaction equations. The key feature is that both the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number are reasonably incorporated into the newly designed stabilization parameter. The error estimates are established, where, up to the regularity‐norm of the exact solution, the explicit‐dependence of the diffusivity, advection, reaction, and mesh size (or the dependence of the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number) is revealed. Such dependence in the error bounds provides a mathematical justification on the effectiveness of the proposed method for any values of diffusivity, advection, dissipative reaction, and mesh size. Numerical results are presented to illustrate the performance of the method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 616–645, 2016  相似文献   

13.
Numerical simulation of oil‐water two‐phase displacement is a fundamental problem in energy mathematics. The mathematical model for the compressible case is defined by a nonlinear system of two partial differential equations: (1) a parabolic equation for pressure and (2) a convection‐diffusion equation for saturation. The pressure appears within the saturation equation, and the Darcy velocity controls the saturation. The flow equation is solved by the conservative mixed volume element method. The order of the accuracy is improved by the Darcy velocity. The conservative mixed volume element with characteristics is applied to compute the saturation, that is, the diffusion is discretized by the mixed volume element and convection is computed by the method of characteristics. The method of characteristics has strong computational stability at sharp fronts and avoids numerical dispersion and nonphysical oscillation. Small time truncation error and accuracy are obtained through this method. The mixed volume element simulates diffusion, saturation, and the adjoint vector function simultaneously. By using the theory and technique of a priori estimates of differential equations, convergence of the optimal second order in norm is obtained. Numerical examples are provided to show the effectiveness and viability of this method. This method provides a powerful tool for solving challenging benchmark problems.  相似文献   

14.
A nonconforming (Crouzeix–Raviart) finite element method with subgrid viscosity is analyzed to approximate advection‐diffusion‐reaction equations. The error estimates are quasi‐optimal in the sense that keeping the Péclet number fixed, the estimates are suboptimal of order in the mesh size for the L2‐norm and optimal for the advective derivative on quasi‐uniform meshes. The method is also reformulated as a finite volume box scheme providing a reconstruction formula for the diffusive flux with local conservation properties. Numerical results are presented to illustrate the error analysis. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

15.
In this paper, we introduce numerical schemes and their analysis based on weak Galerkin finite element framework for solving 2‐D reaction–diffusion systems. Weak Galerkin finite element method (WGFEM) for partial differential equations relies on the concept of weak functions and weak gradients, in which differential operators are approximated by weak forms through the Green's theorem. This method allows the use of totally discontinuous functions in the approximation space. In the current work, the WGFEM solves reaction–diffusion systems to find unknown concentrations (u, v) in element interiors and boundaries in the weak Galerkin finite element space WG(P0, P0, RT0) . The WGFEM is used to approximate the spatial variables and the time discretization is made by the backward Euler method. For reaction–diffusion systems, stability analysis and error bounds for semi‐discrete and fully discrete schemes are proved. Accuracy and efficiency of the proposed method successfully tested on several numerical examples and obtained results satisfy the well‐known result that for small values of diffusion coefficient, the steady state solution converges to equilibrium point. Acquired numerical results asserted the efficiency of the proposed scheme.  相似文献   

16.
We propose and analyze in this paper a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the time evolution, convection, reaction, and source terms on a given grid, which can be nonmatching and can contain nonconvex elements, by means of the cell‐centered finite volume method. To discretize the diffusion term, we construct a conforming simplicial mesh with the vertices given by the original grid and use the conforming piecewise linear finite element method. In this way, the scheme is fully consistent and the discrete solution is naturally continuous across the interfaces between the subdomains with nonmatching grids, without introducing any supplementary equations and unknowns or using any interpolation at the interfaces. We allow for general inhomogeneous and anisotropic diffusion–dispersion tensors, propose two variants corresponding respectively to arithmetic and harmonic averaging, and use the local Péclet upstream weighting in order to only add the minimal numerical diffusion necessary to avoid spurious oscillations in the convection‐dominated case. The scheme is robust, efficient since it leads to positive definite matrices and one unknown per element, locally conservative, and satisfies the discrete maximum principle under the conditions on the simplicial mesh and the diffusion tensor usual in the finite element method. We prove its convergence using a priori estimates and the Kolmogorov relative compactness theorem and illustrate its behavior on a numerical experiment. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

17.
We propose and analyze a new technique for developing residual‐based a posteriori error estimates over the stress and scalar displacement error for the lowest‐order Raviart–Thomas mixed finite element discretizations of convection‐diffusion‐reaction equations in two‐dimension space. The new technique is based on the abstract error estimates, the postprocessed approximation of the scalar displacement, and on the construction of an auxiliary problem. We consider the centered and upwind‐weighted mixed schemes, and concentrate the attention on the presence of an inhomogeneous and an anisotropic diffusion‐dispersion tensor and on a possible convection dominance. Global upper bounds can be directly computed on the base of the solution of the mixed schemes without any additional cost. Local lower bounds without any saturation assumption, hold from the case where convection or reaction are not present to convection‐ or reaction‐dominated equations, and their local efficiency depends on local or global variations in coefficients similar to Péclect number. Numerical experiments are reported to show the competitive behavior of the proposed posteriori error estimates, and to confirm the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 593–624, 2014  相似文献   

18.
We develop an Eulerian‐Lagrangian substructuring domain decomposition method for the solution of unsteady‐state advection‐diffusion transport equations. This method reduces to an Eulerian‐Lagrangian scheme within each subdomain and to a type of Dirichlet‐Neumann algorithm at subdomain interfaces. The method generates accurate and stable solutions that are free of artifacts even if large time‐steps are used in the simulation. Numerical experiments are presented to show the strong potential of the method. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:565–583, 2001  相似文献   

19.
We prove an optimal‐order error estimate in a weighted energy norm for the Eulerian‐Lagrangian discontinuous Galerkin method for unsteady‐state advection–diffusion equations with general inflow and outflow boundary conditions. It is well‐known that these problems admit dynamic fronts with interior and boundary layers. The estimate holds uniformly with respect to the vanishing diffusion coefficient. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method (ELSCM) with piecewise‐cubic Hermite polynomials as basis functions for the numerical simulation to unsteady‐state advection‐diffusion transport partial differential equations. This method greatly reduces the number of unknowns in the conventional collocation method, and generates accurate numerical solutions even if very large time steps are taken. The method is relatively easy to formulate. Numerical experiments are presented to show the strong potential of this method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 271–283, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号