首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The permeation properties of H2, N2, and CO2 were determined at 35 °C and pressures up to 15 atm in phase‐separated polyether‐b‐polyamide segmented block copolymers. These polymers contain poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon‐6 [PA6] or nylon‐12 [PA12] as the hard polyamide phase. Extremely high values of polar (or quadrupolar)/nonpolar gas selectivities, coupled with high CO2 permeability coefficients, were observed. CO2/H2 selectivities as high as 9.8 and CO2/N2 selectivities as high as 56 were obtained in polymers with CO2 permeability coefficients of approximately 220 × 10−10 cm3(STP) cm/(cm2 s cmHg). As the amount of polyether increases, permeability increases. Gas permeability is higher in polymers with less polar constituents, PTMEO and PA12, than in those containing the more polar PEO and PA6 units. CO2/N2 and CO2/H2 selectivities are higher in polymers with higher concentrations of polar groups. These high selectivity values derive from large solubility selectivities in favor of CO2. Because CO2 is larger than H2 and has, therefore, a lower diffusion coefficient than H2, the weak size‐sieving ability of the rubbery polyether phase, which is the locus of most of the gas permeation, also contributes to high CO2/H2 selectivity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2051–2062, 2000  相似文献   

2.
This paper discusses the gas permeation properties of poly(ethylene oxide) (PEO)-based segmented block copolymers containing monodisperse amide segments. These monodisperse segments give rise to a well phase-separated morphology, comprising a continuous PEO phase with dispersed crystallised amide segments. The influence of the polyether phase composition and of the temperature on the permeation properties of various gases (i.e., CO2, N2, He, CH4, O2 and H2) as well as on the pure gas selectivities were studied in the temperature range of −5 °C to 75 °C. The CO2 permeability increased strongly with PEO concentration, and this effect could partly be explained by the dispersed hard segment concentration and partly by the changing chain flexibility. By decreasing the PEO melting temperature the low temperature permeabilities were improved. The gas transport values were dependant on both the dispersed hard segment concentration and the polyether segment length (length between crosslinks). The gas selectivities were dependant on the polyether segment length and thus the chain flexibility.  相似文献   

3.
Polymeric membrane-based gas separation technology has significant advantages compared with traditional amine-based CO2 separation method. In this work, SEBS block copolymer is used as a polymer matrix to incorporate triethylene oxide (TEO) functionality. The short ethylene oxide segment is chosen to avoid crystallization, which is confirmed by differential scanning calorimetry and wide-angle X-ray scattering characterizations. The gas permeability results reveal that CO2/N2 selectivity increased with increasing content of TEO functional group. The highest CO2 permeability (281 Barrer) and CO2/N2 selectivity (31) were obtained for the membrane with the highest TEO incorporation (57 mol%). Increasing the TEO content in these copolymers results in an increase in CO2 solubility and a decrease in C2H6 solubility. For example, as the grafted TEO content increased from 0 to 57 mol%, the CO2 solubility and CO2/C2H6 solubility selectivity increased from 0.72 to 1.3 cm3(STP)/cm3 atm and 0.47 to 1.3 at 35°C, respectively. The polar ether linkage in TEO-grafted SEBS copolymers exhibits favorable interaction with CO2 and unfavorable interaction with nonpolar C2H6, thus enhancing CO2/C2H6 solubility selectivity.  相似文献   

4.
Phenylacetylene (PA) derivatives having two polar groups (ester, 2a – d ; amide, 4) or one cyclic polar group (imide, 5a – c ) were polymerized using (nbd)Rh+[(η6‐C6H5)B?(C6H5)3] catalyst to afford high molecular weight polymers (~1 × 106 – 4 × 106). The hydrolysis of ester‐containing poly(PA), poly( 2a) , provided poly(3,4‐dicarboxyPA) [poly ( 3 )], which could not be obtained directly by the polymerization of the corresponding monomer. The solubility properties of the present polymers were different from those of poly(PA) having no polar group; that is, poly( 2a )–poly( 2d ) dissolved in ethyl acetate and poly( 4 ) dissolved in N,N‐dimethylformamide, while poly(PA) was insoluble in such solvents. Ester‐group‐containing polymers [poly( 2a )–poly( 2d )] afforded free‐standing membranes by casting from THF solutions. The membrane of poly( 2a ) showed high carbon dioxide permselectivity against nitrogen (PCO2/PN2 = 62). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5943–5953, 2006  相似文献   

5.
Four different types of polydepsipeptide‐polyether block copolymers were synthesized via ring‐opening polymerization of 3(S)‐sec‐butylmorpholine‐2,5‐dione (BMD) in the presence of hydroxytelechelic poly(ethylene oxide) (PEO) with stannous octoate as a catalyst.The polymers were an AB block copolymer, an ABA block copolymer, an (A)2B star shaped copolymer and an (A)2B(A)2 copolymer, where A is a poly[3(S)‐sec‐butylmorpholine‐2,5‐dione] (PBMD) and B a poly(ethylene oxide) block. The molar ratio of BMD to PEO was varied to obtain copolymers with different weight fractions of PBMD blocks ranging from 59.8 to 96.7 wt.‐%. The crystallinity of the PEO phase in the copolymers decreases in the following order: AB > (A)2B > ABA > (A)2B(A)2 . The static contact angle θ decreases with increasing PEO content in the block copolymers.  相似文献   

6.
Poly(ethylene oxide)‐segmented polyurethanes (PEO‐PUs) and polyamides (PEO‐PAs) were prepared, and their morphology and CO2/N2 separation properties were investigated in comparison with those of PEO‐segmented polyimides (PEO‐PIs). The contents of the hard and soft segments in the soft and hard domains, WHS and WSH, respectively, were estimated from glass‐transition temperatures with the Fox equation. The phase separation of the PEO domains depended on the kind of hard‐segment polymer; that is, WHS was in the order PU > PA ≫ PI for a PEO block length (n) of 45–52. The larger WHS of PUs and PAs was due to hydrogen bonding between the oxygen of PEO and the NH group of urethane or amide. The CO2/N2 separation properties depended on the kind of hard‐segment polymer. Compared with PEO‐PIs, PEO‐PUs and PEO‐PA had much smaller CO2 permeabilities because of much smaller CO2 diffusion coefficients and somewhat smaller CO2 solubilities. PEO‐PUs also had a somewhat smaller permselectivity because of a smaller solubility selectivity. This was due to the larger WHS of PEO‐PUs and PEO‐PAs, that is, a greater contamination of PEO domains with hard urethane and amide units. For PEO‐PIs, with a decrease in n to 23 and 9, WHS became large and CO2 permeability decreased significantly, but the permselectivity was still at a high level of more than 50 at 35 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1707–1715, 2000  相似文献   

7.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

8.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

9.
Pure gas solubility and permeability of H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8 in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) were determined as a function of pressure at 35°C. Permeability coefficients of the perfluorinated penetrants are approximately an order of magnitude lower than those of their hydrocarbon analogs, and lower even than those of the permanent gases. In striking contrast to hydrocarbon penetrants, PTMSP permeability to fluorocarbon penetrants decreases with increasing penetrant size. This unusual size‐sieving behavior in PTMSP is attributed to low perfluorocarbon solubilities in PTMSP coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. In general, perfluorocarbon penetrants are less soluble than their hydrocarbon analogs in PTMSP. The difference in hydrocarbon and perfluorocarbon solubilities in high free volume, hydrocarbon‐rich PTMSP is much smaller than in hydrocarbon liquids and liquidlike polydimethylsiloxane. The low solubility of perfluorocarbon penetrants is ascribed to the large size of the fluorocarbons, which inhibits their dissolution into the densified regions of the polymer matrix and reduces the number of penetrant molecules that can be accommodated in Langmuir sites. From the permeability and sorption data, diffusion coefficients were calculated as a function of penetrant concentration. With the exception of H2 and the C3 analogs, all of the penetrants exhibit a maximum in their concentration‐dependent diffusion coefficients. Resolution of diffusion coefficients into a mobility factor and a thermodynamic factor reveals that it is the interplay between these two terms that causes the maxima. The mobility of the smaller penetrants (H2, O2, N2, CH4, and CO2) decreases monotonically with increasing penetrant concentration, suggesting that the net free volume of the polymer–penetrant mixture decreases as additional penetrant is added to PTMSP. For larger penetrants mobility either: (1) remains constant at low concentrations and then decreases at higher penetrant concentrations (C2H6, CF4, and C2F6); (2) remains constant for all concentrations examined (C3H8); or (3) increases monotonically with increasing penetrant concentration (C3F8). Presumably these results reflect the varying effects of these penetrants on the net free volume of the polymer–penetrant system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 273–296, 2000  相似文献   

10.
The N‐heterocyclic ligand 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena‐poly[[cadmium(II)‐bis[μ‐benzene‐1,2‐dicarboxylato‐κ4O1,O1′:O2,O2′]‐cadmium(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N2:N32N3:N2] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and two N atoms from two symmetry‐related imb ligands. Two CdII ions are connected by two benzene‐1,2‐dicarboxylate ligands to generate a binuclear [Cd2(1,2‐bdic)2] unit. The binuclear units are further connected into a one‐dimensional chain by pairs of bridging imb ligands. These one‐dimensional chains are further connected through N—H…O hydrogen bonds and π–π interactions, leading to a two‐dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

11.
The design and synthesis of metal–organic frameworks (MOFs) have attracted much interest due to the intriguing diversity of their architectures and topologies. However, building MOFs with different topological structures from the same ligand is still a challenge. Using 3‐nitro‐4‐(pyridin‐4‐yl)benzoic acid (HL) as a new ligand, three novel MOFs, namely poly[[(N,N‐dimethylformamide‐κO)bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O,O′:N]cadmium(II)] N,N‐dimethylformamide monosolvate methanol monosolvate], {[Cd(C12H7N2O4)2(C3H7NO)]·C3H7NO·CH3OH}n, ( 1 ), poly[[(μ2‐acetato‐κ2O:O′)[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O:O′:N]bis[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ4O,O′:O′:N]dicadmium(II)] N,N‐dimethylacetamide disolvate monohydrate], {[Cd2(C12H7N2O4)3(CH3CO2)]·2C4H9NO·H2O}n, ( 2 ), and catena‐poly[[[diaquanickel(II)]‐bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ2O:N]] N,N‐dimethylacetamide disolvate], {[Ni(C12H7N2O4)2(H2O)2]·2C4H9NO}n, ( 3 ), have been prepared. Single‐crystal structure analysis shows that the CdII atom in MOF ( 1 ) has a distorted pentagonal bipyramidal [CdN2O5] coordination geometry. The [CdN2O5] units as 4‐connected nodes are interconnected by L? ligands to form a fourfold interpenetrating three‐dimensional (3D) framework with a dia topology. In MOF ( 2 ), there are two crystallographically different CdII ions showing a distorted pentagonal bipyramidal [CdNO6] and a distorted octahedral [CdN2O4] coordination geometry, respectively. Two CdII ions are connected by three carboxylate groups to form a binuclear [Cd2(COO)3] cluster. Each binuclear cluster as a 6‐connected node is further linked by acetate groups and L? ligands to produce a non‐interpenetrating 3D framework with a pcu topology. MOF ( 3 ) contains two crystallographically distinct NiII ions on special positions. Each NiII ion adopts an elongated octahedral [NiN2O4] geometry. Each NiII ion as a 4‐connected node is linked by L? ligands to generate a two‐dimensional network with an sql topology, which is further stabilized by two types of intermolecular OW—HW…O hydrogen bonds to form a 3D supramolecular framework. MOFs ( 1 )–( 3 ) were also characterized by powder X‐ray diffraction, IR spectroscopy and thermogravimetic analysis. Furthermore, the solid‐state photoluminescence of HL and MOFs ( 1 ) and ( 2 ) have been investigated. The photoluminescence of MOFs ( 1 ) and ( 2 ) are enhanced and red‐shifted with respect to free HL. The gas adsorption investigation of MOF ( 2 ) indicates a good separation selectivity (71) of CO2/N2 at 273 K (i.e. the amount of CO2 adsorption is 71 times higher than N2 at the same pressure).  相似文献   

12.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   

13.
In this study, the polymerization of (2‐hydroxyethyl) acrylate (HEA), in polar media, using Cu(0)‐mediated radical polymerization also called single‐electron transfer–living radical polymerization (SET‐LRP) is reported. The kinetics aspects of both the homopolymerization and the copolymerization from a poly(ethylene oxide) (PEO) macroinitiator were analyzed by 1H NMR. The effects of both the ligand and the solvent were studied. The polymerization was shown to reach very high monomer conversions and to proceed in a well‐controlled fashion in the presence of tris[2‐(dimethylamino)ethyl]amine Me6‐TREN and N, N,N′, N″, N″‐pentamethyldiethylenetriamine (PMDETA) in dimethylsulfoxide (DMSO). SET‐LRP of HEA was also led in water, and it was shown to be faster than in DMSO. In pure water, Me6‐TREN allowed a better control over the molar masses and polydispersity indices than PMDETA and TREN. Double hydrophilic PEO‐b‐PHEA block copolymers, exhibiting various PHEA block lengths up to 100 HEA units, were synthesized, in the same manner, from a bromide‐terminated PEO macroinitiator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Two new mononuclear coordination compounds, bis{4‐[(hydroxyimino)methyl]pyridinium} diaquabis(pyridine‐2,5‐dicarboxylato‐κ2N,O2)zincate(II), (C6H7N2O)2[Zn(C7H3NO4)2(H2O)2], (1), and (pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)bis[N‐(pyridin‐4‐ylmethylidene‐κN)hydroxylamine]zinc(II), [Zn(C7H3NO4)(C6H6N2O)2], (2), have been synthesized and characterized by single‐crystal X‐ray diffractometry. The centrosymmetric ZnII cation in (1) is octahedrally coordinated by two chelating pyridine‐2,5‐dicarboxylate ligands and by two water molecules in a distorted octahedral geometry. In (2), the ZnII cation is coordinated by a tridentate pyridine‐2,6‐dicarboxylate dianion and by two N‐(pyridin‐4‐ylmethylidene)hydroxylamine molecules in a distorted C2‐symmetric trigonal bipyramidal coordination geometry.  相似文献   

15.
A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 16–24  相似文献   

16.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

17.
Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α‐amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N‐methyl and N,N‐dimethyl amino acids were synthesized by the methylation of α‐amino acids and characterized by a GC‐MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC‐MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N‐methyl ( 1–18 ) and N,N‐dimethyl amino acids ( 19–35 ) showed abundant [M‐COOC2H5]+ ions. The fragment ions due to loss of C2H4, CO2, (CO2 + C2H4) from [M‐COOC2H5]+ were of structure indicative for 1–18 . The EI spectra of 19–35 showed less number of fragment ions when compared with those of 1–18 . The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H]+ ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds ( 1–35 ) were confirmed by high‐resolution mass spectra data and further substantiated by the data obtained from 13C2‐labeled glycines and N‐ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification of amino acids and methylated amino acids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The new MOF Ga‐MIL‐53‐PDA [Ga(OH)(O2C‐C8H8‐CO2)] · H2O ( 1 ) was synthesized by a hydrothermal reaction of gallium nitrate, 1,4‐phenylenediacetic acid (H2PDA) and sodium hydroxide at 100 °C for 24 h. The product is a structural analogue of the archetypical MIL‐53 framework. Its crystal structure was determined by Rietveld refinement of powder X‐ray diffraction (PXRD) data. Furthermore 1,4‐phenylenedipropionic acid (H2PDP) was employed for further synthesis, which resulted in the dense layered coordination polymers [Ga2(OH)4(O2C‐C10H12‐CO2)] ( 2 ) and [Ga(OH)(O2C‐C10H12‐CO2)] ( 3 ), for which accurate structural models could be established. All compounds were fully characterized and tested regarding potential breathing behavior. Most remarkably, Ga‐MIL‐53‐PDA showed a subtle flexibility upon de/‐rehydration also confirming its porosity, but no drastic structural changes were observed.  相似文献   

19.
The title compounds, 3,5,7‐triphenyl‐1,2‐diazacyclohepta‐1(7),2‐diene, C23H20N2, (I), and 3,7‐bis(2‐hydroxyphenyl)‐5‐phenyl‐1,2‐diazacyclohepta‐1(7),2‐diene, C23H20N2O2, (II), constitute the first structurally characterized examples of seven‐membered heterocycles with 1,2‐diaza ring N atoms. Compound (I) crystallizes in the space group P, with two independent molecules in the asymmetric unit that differ in the conformation of one of the phenyl rings, while (II) crystallizes in the space group C2/c. The C5N2 ring in each of (I) and (II) adopts a twist‐boat conformation. Compound (I) exhibits neither C—H...π interactions nor π–π stacking interactions, whereas (II) shows both intramolecular O—H...N hydrogen bonds and a C—H...π interaction that joins the molecules into an infinite chain in the [010] direction.  相似文献   

20.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号