首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We consider a multigrid algorithm (MG) for the cell centered finite difference scheme (CCFD) on general triangular meshes using a new prolongation operator. This prolongation is designed to solve the diffusion equation with strongly discontinuous coefficient as well as with smooth one. We compare our new prolongation with the natural injection and the weighted operator in Kwak, Kwon, and Lee ( 8 ) and the behaviors of these three prolongation are discussed. Numerical experiments show that (i) for smooth problems, the multigrid with our new prolongation is fastest, the next is the weighted prolongation, and the third is the natural injection; and (ii) for nonsmooth problems, our new prolongation is again fastest, the next is the natural injection, and the third is the weighted prolongation. In conclusion, our new prolongation works better than the natural injection and the weighted operator for both smooth and nonsmooth problems. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

2.
3.
In this article, a block‐centered finite difference method for fractional Cattaneo equation is introduced and analyzed. The unconditional stability and the global convergence of the scheme are proved rigorously. Some a priori estimates of discrete norm with optimal order of convergence both for pressure and velocity are established on nonuniform rectangular grids. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

4.
We derive a novel finite volume method for the elliptic equation, using the framework of mixed finite element methods to discretize the pressure and velocities on two different grids (covolumes), triangular (tetrahedral) mesh and control volume mesh. The new discretization is defined for tensor diffusion coefficient and well suited for heterogeneous media. When the control volumes are created by connecting the center of gravity of each triangle to the midpoints of its edges, we show that the discretization is stable and first order accurate for both scalar and vector unknowns. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

5.
A block‐centered finite difference scheme is introduced to solve the nonlinear Darcy–Forchheimer equation with variable Forchheimer number, in which the velocity and pressure can be approximated simultaneously. For variable Forchheimer number the second‐order error estimates for both pressure and velocity are established on nonuniform rectangular grid. An iteration process is given to solve the nonlinear system. Numerical experiments using the scheme show the consistency of the convergence rates of the presented methods with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1603–1622, 2015  相似文献   

6.
A space‐time finite element method is introduced to solve the linear damped wave equation. The scheme is constructed in the framework of the mixed‐hybrid finite element methods, and where an original conforming approximation of H(div;Ω) is used, the latter permits us to obtain an upwind scheme in time. We establish the link between the nonstandard finite difference scheme recently introduced by Mickens and Jordan and the scheme proposed. In this regard, two approaches are considered and in particular we employ a formulation allowing the solution to be marched in time, i.e., one only needs to consider one time increment at a time. Numerical results are presented and compared with the analytical solution illustrating good performance of the present method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

7.
Characteristic methods generally generate accurate numerical solutions and greatly reduce grid orientation effects for transient advection‐diffusion equations. Nevertheless, they raise additional numerical difficulties. For instance, the accuracy of the numerical solutions and the property of local mass balance of these methods depend heavily on the accuracy of characteristics tracking and the evaluation of integrals of piecewise polynomials on some deformed elements generally with curved boundaries, which turns out to be numerically difficult to handle. In this article we adopt an alternative approach to develop an Eulerian‐Lagrangian control‐volume method (ELCVM) for transient advection‐diffusion equations. The ELCVM is locally conservative and maintains the accuracy of characteristic methods even if a very simple tracking is used, while retaining the advantages of characteristic methods in general. Numerical experiments show that the ELCVM is favorably comparable with well‐regarded Eulerian‐Lagrangian methods, which were previously shown to be very competitive with many well‐perceived methods. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

8.
We develop an upwind finite volume (UFV) scheme for unsteady‐state advection‐diffusion partial differential equations (PDEs) in multiple space dimensions. We apply an alternating direction implicit (ADI) splitting technique to accelerate the solution process of the numerical scheme. We investigate and analyze the reason why the conventional ADI splitting does not satisfy maximum principle in the context of advection‐diffusion PDEs. Based on the analysis, we propose a new ADI splitting of the upwind finite volume scheme, the alternating‐direction implicit, upwind finite volume (ADFV) scheme. We prove that both UFV and ADFV schemes satisfy maximum principle and are unconditionally stable. We also derive their error estimates. Numerical results are presented to observe the performance of these schemes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 211–226, 2003  相似文献   

9.
The three‐dimensional displacement of two‐phase flow in porous media is a preliminary problem of numerical simulation of energy science and mathematics. The mathematical model is formulated by a nonlinear system of partial differential equations to describe incompressible miscible case. The pressure is defined by an elliptic equation, and the concentration is defined by a convection‐dominated diffusion equation. The pressure generates Darcy velocity and controls the dynamic change of concentration. We adopt a conservative block‐centered scheme to approximate the pressure and Darcy velocity, and the accuracy of Darcy velocity is improved one order. We use a block‐centered upwind multistep method to solve the concentration, where the time derivative is approximated by multistep method, and the diffusion term and convection term are treated by a block‐centered scheme and an upwind scheme, respectively. The composite algorithm is effective to solve such a convection‐dominated problem, since numerical oscillation and dispersion are avoided and computational accuracy is improved. Block‐centered method is conservative, and the concentration and the adjoint function are computed simultaneously. This physical nature is important in numerical simulation of seepage fluid. Using the convergence theory and techniques of priori estimates, we derive optimal estimate error. Numerical experiments and data show the support and consistency of theoretical result. The argument in the present paper shows a powerful tool to solve the well‐known model problem.  相似文献   

10.
We present a parallel matrix‐free implicit finite volume scheme for the solution of unsteady three‐dimensional advection‐diffusion‐reaction equations with smooth and Dirac‐Delta source terms. The scheme is formally second order in space and a Newton–Krylov method is employed for the appearing nonlinear systems in the implicit time integration. The matrix‐vector product required is hardcoded without any approximations, obtaining a matrix‐free method that needs little storage and is well‐suited for parallel implementation. We describe the matrix‐free implementation of the method in detail and give numerical evidence of its second‐order convergence in the presence of smooth source terms. For nonsmooth source terms, the convergence order drops to one half. Furthermore, we demonstrate the method's applicability for the long‐time simulation of calcium flow in heart cells and show its parallel scaling. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 143–167, 2015  相似文献   

11.
We propose a new nonlinear positivity‐preserving finite volume scheme for anisotropic diffusion problems on general polyhedral meshes with possibly nonplanar faces. The scheme is a vertex‐centered one where the edge‐centered, face‐centered, and cell‐centered unknowns are treated as auxiliary ones that can be computed by simple second‐order and positivity‐preserving interpolation algorithms. Different from most existing positivity‐preserving schemes, the presented scheme is based on a special nonlinear two‐point flux approximation that has a fixed stencil and does not require the convex decomposition of the co‐normal. More interesting is that the flux discretization is actually performed on a fixed tetrahedral subcell of the primary cell, which makes the scheme very easy to be implemented on polyhedral meshes with star‐shaped cells. Moreover, it is suitable for polyhedral meshes with nonplanar faces, and it does not suffer the so‐called numerical heat‐barrier issue. The truncation error is analyzed rigorously, while the Picard method and its Anderson acceleration are used for the solution of the resulting nonlinear system. Numerical experiments are also provided to demonstrate the second‐order accuracy and well positivity of the numerical solution for heterogeneous and anisotropic diffusion problems on severely distorted grids.  相似文献   

12.
13.
14.
In this article, we develop a combined finite element‐weighted upwind finite volume method for convection‐dominated diffusion problems in two dimensions, which discretizes the diffusion term with the standard finite element scheme, and the convection and source terms with the weighted upwind finite volume scheme. The developed method leads to a totally new scheme for convection‐dominated problems, which overcomes numerical oscillation, avoids numerical dispersion, and has high‐order accuracy. Stability analyses of the scheme are given for the problems with constant coefficients. Numerical experiments are presented to illustrate the stability and optimal convergence of our proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 799–818, 2016  相似文献   

15.
An optimal nonlinear Galerkin method with mixed finite elements is developed for solving the two‐dimensional steady incompressible Navier‐Stokes equations. This method is based on two finite element spaces XH and Xh for the approximation of velocity, defined on a coarse grid with grid size H and a fine grid with grid size h ? H, respectively, and a finite element space Mh for the approximation of pressure. We prove that the difference in appropriate norms between the solutions of the nonlinear Galerkin method and a classical Galerkin method is of the order of H5. If we choose H = O(h2/5), these two methods have a convergence rate of the same order. We numerically demonstrate that the optimal nonlinear Galerkin method is efficient and can save a large amount of computational time. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 762–775, 2003.  相似文献   

16.
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
We mathematically analyze the diffusion‐based algorithm to produce maps with a given Jacobian, introduced independently by M. T. Gastner and M. E. J. Newman (2004) and ourselves (2003), but in particular cases where the initial density has line or angle discontinuities in the plane. In this situation, the conclusion reinforces the conjecture that the algorithm is always well‐posed, in accordance with its extensive numerical use in some areas of applied sciences (cartograms, sensor networks, computational grids, or image registration). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

19.
It is shown how mesh‐centered finite differences can be obtained from unconventional mixed‐hybrid nodal finite elements. The classical Raviart‐Thomas schemes of index k (RTk) are based on interpolation parameters that are cell and/or edge moments. For the unconventional form (URTk), they become point values at Gaussian points. In particular, the scheme URT1 is fully described. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006  相似文献   

20.
The coupling of two locally mass conservative methods is formulated and analyzed for the time‐dependent convection‐diffusion problem. Finite volume method is used in some subdomains and interior penalty discontinuous Galerkin method is used in other subdomains. Numerical examples show the advantages of the proposed hybrid method, namely an accurate approximation obtained at a reduced computational cost. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 133–157, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号