首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the polymerization time and rate as well as the solution's ionic strength on the morphology, conductivity, and molecular structure of the polypyrrole (PPy) microtubule [synthesized by the template‐free method in the presence of β‐naphthalene sulfonic acid (β‐NSA) as the dopant] were investigated. It was found that the formation of the PPy‐NSA microtubule was a slow and self‐assembled growth process. Moreover, the β‐NSA dopant played a “templatelike” role in the formation of tubular PPy‐NSA, which might be relative to its surfactant characters. This assumption was further confirmed by the phenomenon that the morphology of PPy‐NSA could be modified by increasing the ionic strength by adding inorganic salt. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 997–1004, 2001  相似文献   

2.
Microtubules of polyaniline (PANI) doped with HCl, HBF4, and β-naphthalene sulfonic acid (NSA) were synthesized by an improved in situ doping polymerization method. Ultraviolet-visible spectra, scanning electron microscopy, ESR, and X-ray diffraction characterized the molecular structure of the resulting PANI microtubules. These microtubules had a diameter of 1 ∼ 10 μm and a conductivity at room temperature of 0.2 ∼ 3.5 S/cm, depending on the molecular structure and concentration of the dopant. The degree of crystallinity of the PANI microtubules was enhanced by increasing the molecular size of the dopant; that is, the order PANI-NSA > PANI-HBF4 > PANI-HCl was observed in the crystallinity of the microtubules. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4605–4609, 1999  相似文献   

3.
Conducting microtubules of Polyaniline (PANI) were synthesized for the first time by the “in situ doping polymerization” method in the presence of β‐naphthal‐ enesulfonic acid (NSA) as dopant. Different doping methods, such as “immerse doping” and “grind doping,” and different synthetic conditions, such as molar ratio of aniline (An) to NSA (An/NSA), concentration of NSA in the polymerization media, reaction temperature, and time were investigated to understand the formation of microtubules. It was found that the PANI–NSA microtubules can be formed only by the “in situ doping polymerization” method, and the above synthetic conditions strongly affect the formation of the PANI–NSA microtubules, especially the molar ratio of An to NSA. An optimal condition was found under which tubules with 1–3 μm in diameter and 10–50 μm in length were obtained. The morphology of PANI–NSA tubules was proved by SEM and TEM, and their backbone structure was characterized by FTIR, UV‐VIS, XPS, and X‐ray diffraction. Results of these measurements showed that the molecular structures of the resulted PANI–NSA microtubules were identical to that of PANI–HCl synthesized by conventional method. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 151–157, 1999  相似文献   

4.
Soluble polypyrrole (PPy) with high conductivity (27 S/cm) has been prepared by chemical polymerization of pyrrol monomer in the presence of β-naphthalene sulphonic acid (NSA) as a dopant. The solubility of the resulting conducting polymer of PPy-NSA in m-cresol increases with increasing the concentration of NSA in the polymerization media, and the highest solubility of PPy-NSA in m-cresol is about 1.2 g/100 mL. The room-temperature conductivity of PPy-NSA significantly increases with the concentration of NSA when the concentration of NSA is less than 0.1 mol/L, while it slightly decreases with increasing the concentration of NSA after the concentration of NSA is higher than 0.1 mol/L. UV-VIS spectra and ESR measurements demonstrate that both polaron and bipolaron are present as a charge carrier. The resulting PPy-NSA exhibits unusual fibrillar morphology with a diameter of about 0.5 μm, which is quite different from the granular morphology of PPy doped with dodecyl benzene sulfonic acid (DBSA) and HCl. Moreover, the polymerization conditions greatly influence the morphology of the obtained PPy-NSA. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3689–3695, 1997  相似文献   

5.
Doped polyaniline (PANI) was synthesized by an “in situ doping polymerization” method in the presence of different sulfonic acids, such as methanesulfonic acid (MSA), p‐methylbenzene sulfonic acid (MBSA), β‐naphthalenesulfonic acid (β‐NSA), α‐naphthalenesulfonic acid (α‐NSA), 1,5‐naphthalenedisulfonic acid (1,5‐NSA), and 2,4‐dinitronaphol‐7‐sulfonate acid (NONSA). Morphology, solubility in m‐cresol, and electrical properties of the doped PANI were measured with the variation of the molecular structure of the selected sulfonic acids. Granular morphology was obtained when the sulfonic acids without a naphthalene ring, such as MSA and MBSA, were used. Regular tubular morphology was obtained only when β‐NSA was used. The tubular morphology can be modified by changing the substitutes, the number, and location of sulfo‐group(SOH) on the naphthalene ring. These results indicated that naphthalene ring in the selected sulfonic acids plays an important role in forming the tubular morphology of the doped PANI by the “in situ doping polymerization” method. All resulting PANI salts were soluble in m‐cresol, with the solubility depending on the molecular structure of the selected dopants. Room‐temperature conductivity for the doped PANI ranges from 10−1 to 100S/cm. Temperature dependence of conductivity shows a semiconductor behavior, and it can be expressed by one dimenson Variable Range Hopping (VRH) model. 1 © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1277–1284, 1999  相似文献   

6.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   

7.
Composites of polypyrrole (PPy) with electrical and ferromagnetic behaviors were synthesized by a chemical method in the presence of p‐dodecylbenzene sulfonic acid sodium salt (NaDS) as a surfactant and dopant. The magnetic properties of the resulting composites showed ferromagnetic behavior, such as high saturated magnetization (Ms = 3.06–43.7 emu/g), and coercive force (Hc = 9–57 Oe). The saturated magnetization linearly increased with increases in the Fe content. No influence of the counterion on this relationship was observed. The conductivity of the composites at room temperature depended on the counterion and doping degree. The highest conductivity of 100 S/cm was achieved under the optimal synthetic conditions. A structural characterization by elemental analysis, Fourier transform infrared, and X‐ray diffraction proved that nanometer‐sized (16–20‐nm) iron oxide (Fe3O4) in the composites was responsible for the ferromagnetic behavior of the composites, whereas the high conductivity of the composites contributed to the difficult deprotonation of the doping PPy with DS counterion in a basic reaction medium. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2734–2739, 2000  相似文献   

8.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006  相似文献   

9.
This article reports a simple self‐assembly process for facile one‐step synthesis of novel electromagnetic functionalized polypyrrole (PPy)/Fe3O4 composite nanotubes using p‐toluenesulfonic acid (p‐TSA) as the dopant and FeCl3 as the oxidant. The key trick of the present method is to use FeCl3 as the oxidant for both PPy and Fe3O4 in the same time to synthesize PPy/Fe3O4 composite nanotubes in one‐step. This facile one‐step method is much simpler than the conventional approach using the Fe3O4 nanoparticles as the additives. Compared to the similar composites synthesized using the conventional method, the as‐prepared PPy‐p‐TSA/Fe3O4 composite nanotubes using the facile one‐step self‐assembly process show much higher room‐temperature conductivity. Moreover, the composite nanotubes display interesting ferromagnetic behavior. The electrical properties of the PPy‐p‐TSA/Fe3O4 composite nanotubes are dominated by the amount of FeCl3 while their magnetic properties are controlled by the amount of FeCl2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 320–326, 2010  相似文献   

10.
Polypyrrole (PPy)-cellulose composites were prepared by in situ polymerization of pyrrole in pulp suspension using ferric chloride as an oxidant. Some sulfonic compounds including p-toluenesulfonic acid and its sodium salt (PTSA and PTSA-Na), benzenesulfonic acid (BSA), dodecylbenzene sulfonic acid and its sodium salt (DBSA and DBSA-Na), 2-naphthalene sulfonic acid (NSA) and 9,10-anthraquinone-2-sulfonic acid sodium salt (AQSA-Na) were used as dopants, and their effect on the conductivity of PPy-cellulose composite was investigated. The results showed that the species and dose of dopants had significant effect on the surface resistivity and environmental stability of PPy-cellulose composite. As the dopant, PTSA and DBSA had a superior doping effect compared to their sodium salts. The doping result of BSA was close to that of PTSA. NSA bearing a naphthalene ring and AQSA-Na bearing an anthraquinone ring gave the best conductivity. Using NSA or AQSA-Na as a dopant, along with suitable polymerization conditions, the PPy-cellulose composite obtained showed a surface resistivity as low as 20 Ω cm−2. For most dopants, the lowest surface resistivity could be obtained when the molar ratio of dopant to pyrrole was 1:1. Both ATR-FTIR (attenuated total reflection-Fourier transform infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy) analysis confirmed that the PPy on pulp fibers doped with PTSA, PTSA-Na, NSA and AQSA-Na had different doping levels. The higher doping level of the PPy in the composites doped with NAS and AQSA-Na might be related to the stronger interaction of cellulose with PPy chains. Both SEM (scanning electron microscopy) and AFM (atomic force microscopy) observation revealed the fine grain microstructure of the PPy on the composites with average grain sizes in the range of 100–200 nm, and the PPy on the samples doped with NSA and AQSA-Na exhibited quite different morphology as compared to those doped with PTSA and its sodium salt.  相似文献   

11.
In this study, photorefractive polymer composites were developed in which polycarbonate was doped with a dual-function dopant and a photocharge generation sensitizer. The dual-function dopant has the function of providing both charge transport and optical nonlinearity. The composites' photoconductivity and electrooptic coefficient were investigated experimentally. The effects of the glass-transition temperature (Tg), dual-function dopant content, and electric field on the composites' photorefractive properties were studied as well. The results show that the composites' photorefractive properties are enhanced with decreasing Tg, increasing dual-function dopant content, and increasing electric field. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3302–3306, 1999  相似文献   

12.
In general, the conductivity of polypyrrole (PPy) is reduced by addition of magnetic nanoparticles as the additives owing to insulating effect of magnetic nanoparticles. In this article, novel electromagnetic functionalized PPy composite nanostructures were prepared by a template‐free method associated with γ‐Fe2O3 nano‐needles as the hard templates in the presence of p‐toluene‐sulfonic acid (p‐TSA) and FeCl3·6H2O as the dopant and oxidant, respectively. It was found that the molar ratio of γ‐Fe2O3 to pyrrole monomer represented by [γ‐Fe2O3]/[Py] ratio strongly affected the morphology and the conductivity of the γ‐Fe2O3/PPy composite nanostructures. A growth mechanism for the composite nanostructures was proposed based on the variance of the morphology with the [γ‐Fe2O3]/[Py] ratio. Compared with previously reported γ‐Fe2O3/PPy composites, the as‐prepared novel composite nanostructures showed much higher conductivity (up to ~50 times higher). Moreover, the synthesized γ‐Fe2O3/PPy composite nanostructures displayed ferromagnetic behavior with a high coercive force. Explanations for these interesting observations were made in terms of the magnetic interaction between ferromagnetic γ‐Fe2O3 nano‐needles and spin‐polaron of PPy nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4446–4453, 2009  相似文献   

13.
Heparin‐doped polypyrrole (PPy‐Hep) and ‐doped polypyrrole (PPy‐ClO4) films are synthesized onto FTO‐coated glass electrode in a potentiostatic electrochemical process with the aim of producing uniform, transparent, and adherent coating. The resultant polymers are characterized via cyclic voltammetry, scanning electron microscopy (SEM), and UV–vis absorption spectroscopy. SEM study indicates that the PPy‐Hep film to be composed of a continuous interlinked network of quasi spherical grains (50–80 nm in dimensions). The electrochromic properties of PPy‐Hep and PPy‐ClO4 polymer films are compared to spectroelectrochemistry and switching studies. The effect of different solvents (water, propylene carbonate, and acetonitrile) on the electrochromic features of electropolymerized polymers has been investigated, and we find a very significant solvent effect. PPy‐Hep film exhibits switching time of 1 s and the maximum transmittance contrast (ΔT%) is 48% at 800 nm in water. In addition, presence of Hep causes drastic enhancement of electro‐optical stability of PPy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3365–3371  相似文献   

14.
The electrically conductive polypyrrole/dodecylbenzene sulfonic acid/poly(N‐isopropylacrylamide‐co‐acrylic acid) (PPy/DBSA/poly(NIPAAm‐co‐AA)) composite microgels were synthesized by a chemical oxidation of pyrrole in the presence of DBSA as the primary dopant, and poly(NIPAAm‐co‐AA) microgels as the polymeric codopant and template, in which APS was used as the oxidant. It was proposed to prepare “intelligent” polymer microgel particles containing both thermosensitive and electrically conducting properties. The polymerization of pyrrole took place directly inside the microgel networks, leading to formation of composite microgels and the morphology was observed by transmission electron microscope. PPy particles interacted strongly with microgels, as the acid groups of microgels acted as the polymeric codopant. The composite microgels thus formed showed electrically conducting behavior dependent on humidity and temperature. At temperatures lower than lower critical solution temperature, the conductivity decreased with increasing the humidity and a small hysteresis phenomenon was observed. The hysteresis became indistinct when temperature was near volume phase transition temperature. However, after the treatment of high temperature and high humidity, the conductivity increased surprisingly due to the structure reorganization inside the composite microgels. The distinctive functionality of the PPy composite microgels was expected to be utilized in many attractive applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1648–1659, 2006  相似文献   

15.
Nanostructures of polypyrrole (PPy) were synthesized in the presence of different dopants including hydrochloric acid (HCl), ferric chloride (FeCl3), p‐toluene sulfonic acid (p‐TSA), camphor sulfonic acid (CSA), and polystyrene sulfonic acid (PSSA), using a simple interfacial oxidative polymerization method. The method is a reliable non‐template approach with relatively simple instrumentation, ease of synthesis, and economic viability for synthesizing PPy nanostructures. Morphology of synthesized PPy structures was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicate the formation of one‐dimensional (1D) nanofibers with average diameter of 75–180 nm. Energy dispersive spectrum (EDS) of the PPy nanofibers indicates the attachment of the dopants to the PPy backbone; the fact is further confirmed by the Fourier transform infrared (FTIR) spectra of PPy nanostructures. Thermal stabilities of the nanostructures explored using thermal gravimetric analysis (TGA) follow the order PPy‐p‐TSA > CSA > HCl > FeCl3 > PSSA. It is noticed that the electrical conductivity (EC) of PPy nanostructures depends upon the nature of dopant (PPy‐p‐TSA > CSA > HCl > FeCl3 > PSSA), PPy‐p‐TSA nanofibers showing the highest EC of 6 × 10?2 Scm?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Conducting polypyrrole (PPy)‐montmorillonite (MMT) clay nanocomposites have been synthesized by the in situ intercalative polymerization method. The PPy‐MMT nanocomposites are characterized by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), ultraviolet–visible (UV–vis) spectroscopy, thermogravimetric analysis (TGA), and Fourier‐transform infrared (FTIR) spectroscopy. XRD patterns show that after polymerization by the in situ intercalative method with ammonium persulfate and 1 M HCl, an increase in the basal spacing from 1.2 to 1.9 nm was observed, signifying that PPy is synthesized between the interlayer spaces of MMT. TEM and SEM micrographs suggest that the coexistence of intercalated MMT layers with the PPy macromolecules. FTIR reveals that there might be possible interfacial interactions present between the MMT clay and PPy matrix. The study also shows that the introduction of MMT clay results in thermal stability improvement of the PPy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2279–2285, 2008  相似文献   

17.
We reported the functionalization of multiwalled carbon nanotube (MWCNT) with 4‐aminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium. The resulting 4‐aminobenzoyl‐functionalized MWCNT (AF‐MWCNT) was used as a platform for the grafting of polypyrrole (PPy) in ammonium persulfate (APS)/aqueous hydrochloric acid solution to produce PPy‐grafted MWCNT (PPy‐g‐MWCNT) composite. After dedoping with alkaline treatment, PPy‐g‐MWCNT displayed 20 times higher electrical conductivity than that of PPy. The current density and cycle stability of PPy‐g‐MWCNT composite were also remarkably improved compared with those of PPy homopolymer, suggesting that an efficient electron transfer between PPy and MWCNT was possible through covalent links. In addition, PPy‐g‐MWCNT displayed high electrocatalytic activity for oxygen reduction reaction (ORR). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
This work demonstrates a feasible route to synthesize the layered polypyrrole/graphite oxide (PPy/GO) composite by in situ emulsion polymerization in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) as emulsifier. AFM and XRD results reveal that the GO can be delaminated into nanosheets and well dispersed in aqueous solution in the presence of CTAB. The PPy nanowires are formed due to the presence of the lamellar mesostructured (CTA)2S2O8 as a template. The results of the PPy/GO composite indicate the PPy insert successfully into GO interlayers, and the nanofiber‐like PPy are deposited onto the GO surface. Owing to π–π electron stacking effect between the pyrrole ring of PPy and the unoxided domain of GO sheets, the electrical conductivity of PPy/GO composite (5 S/cm) significantly improves in comparison with pure PPy nanowires (0.94 S/cm) and pristine GO (1 × 10?6 S/cm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1329–1335, 2010  相似文献   

19.
Palladium-catalyzed polycondensation between 3,8-dibromo-1,10-phenanthroline and substituted phenyl-1,4-diacetylenes in the presence of diisopropylamine produced the soluble π-conjugated poly(heteroarylene ethynylene)s 7a and 7b . The polymers were obtained in high yields (86–92%) and had molecular weights of n = 8700 g · mol−1 ( 7a ; vapor pressure osmometry) and 6900 g · mol−1 ( 7b ; vapor pressure osmometry). The low molecular model compounds 6a and 6b were prepared to analyze the connection between the primary structure and spectroscopic properties. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4442–4448, 1999  相似文献   

20.
Styrene oxide (SO) was polymerized with a diethylzinc/α-pinene oxide (ZnEt2/α-PiO) catalyst system under various conditions. Polystyrene oxide (PSO) thus obtained had a regular head-to-tail and isotactic structure. The number-average molecular weight reached 4.07 × 104, and the molecular weight distribution was 5.7 (Mw/Mn). The glass-transition temperature of PSO was about 47 to 50 °C, depending on the molecular weight. The molar ratio of ZnEt2 to α-PiO, 2 : 1, led to a high molecular weight of PSO in an 89.2% yield within 72 h. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4640–4645, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号