首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis of core-shell type polystyrene monodisperse particles with surface acetal groups was carried out by a two-step emulsion polymerization process. In a first step, the core was synthesized by batch emulsion polymerization of styrene (St), and in the second step, the shell was polymerized by batch emulsion terpolymerization of styrene, methacrylic acid (MAA), and methacrylamidoacetaldehyde dimethyl acetal (MAAMA), using the seed obtained previously. With the aim of analyzing the effect of the thickness of the shell, the pH of the reaction medium and the weight ratio of the termonomers to prepare the shell, on the amount of the functionalized groups, several core-shell type latex particles were synthesized by two-step emulsion polymerization in a batch reactor. The latexes were characterized by TEM and conductimetric titration to obtain the particle size distribution and the amount of carboxyl and acetal groups on the surface, respectively. Looking for the applicability of the synthesized latexes in immunoassays, IgG a-CRP rabbit antibody was covalently bonded to the surface of the particles synthesized in neutral medium. The complex latex-protein was immunologically active against the CRP antigen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1605–1610, 1997  相似文献   

2.
Cationic latex particles with surface amino groups were prepared by a multistep batch emulsion polymerization. In the first one or two steps, monodisperse cationic latex particles to be used as the seed were synthesized, and in the third step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)] were used to synthesize the final functionalized latex particles. 2,2′‐Azobisisobutyramidine dihydrochloride was used as the initiator, and different concentrations of two quaternary ammonium emulsifiers with hydrophobic chains of different lengths were examined. To characterize the final latexes yields were obtained gravimetrically, and particle size distributions and average particle diameters were determined by transmission electron microscopy and photon correlation spectroscopy. The amount of amino groups was determined by fluorimetry. The effect of the amino‐functional monomer used on the final latexes and the colloidal behavior of the system were studied. The influence of the different conditions utilized to synthesize the latexes on the colloidal stability of the particles was evaluated in terms of the Fuchs stability ratio and electrophoretic mobility. High yields of the amino‐functional monomers were obtained. Surface amino, amidine, and quaternary ammonium groups provided the cationic character. The colloidal stability behavior of the products obtained was compatible with their cationic character. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2929–2936, 2001  相似文献   

3.
Monodisperse latex particles with surface amino groups were prepared by a two‐step emulsion polymerization. In the first step, the seeds were synthesized by batch emulsion polymerization of styrene; and in the second step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)], two different initiator systems (K2S2O8 and K2S2O8/Na2S2O5) and mixtures of emulsifiers sodium dodecylsulfate (SDS) and Tween 21 were used to synthesize the final latexes. To characterize the final latexes, conversions were obtained gravimetrically and particle size distributions and average particle diameters were determined by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The amount of amino groups was determined by the SPDP (N‐succinimidyl 3‐(2‐pyridyldithio)propionate) method. The influence of the different conditions used to synthesize the latexes on the colloidal stability of the particles was evaluated by measuring the diameters of the final latexes dispersed in solutions at different pHs and ionic strengths. The most stable latexes were obtained using the smallest seed, VBAH monomer, and the K2S2O8/Na2S2O5 initiator system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4230–4237, 2000  相似文献   

4.
The synthesis of functionalized submicrometer magnetic latex particles is described as obtained from a preformed magnetic emulsion composed of organic ferrofluid droplets dispersed in water. Composite (polystyrene/γ‐Fe2O3) particles were prepared according to a two‐step procedure including the swelling of ferrofluid droplets with styrene and a crosslinking agent (divinyl benzene) followed by seeded emulsion polymerization with either an oil‐soluble [2,2′‐azobis(2‐isobutyronitrile)] or water‐soluble (potassium persulfate) initiator. Depending on the polymerization conditions, various particle morphologies were obtained, ranging from asymmetric structures, for which the polymer phase was separated from the inorganic magnetic phase, to regular core–shell morphologies showing a homogeneous encapsulation of the magnetic pigment by a crosslinked polymeric shell. The magnetic latexes were extensively characterized to determine their colloidal and magnetic properties. The desired core–shell structure was efficiently achieved with a given styrene/divinyl benzene ratio, potassium persulfate as the initiator, and an amphiphilic functional copolymer as the ferrofluid droplet stabilizer. Under these conditions, ferrofluid droplets were successfully turned into superparamagnetic polystyrene latex particles, about 200 nm in size, containing a large amount of iron oxide (60 wt %) and bearing carboxylic surface charges. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2642–2656, 2006  相似文献   

5.
Monodisperse latex particles with different amounts of surface amino and amidine groups were synthesized by means of a semicontinuous seeded cationic emulsion polymerization of styrene and a cationic monomer. High partial overall conversions for styrene and limited ones for the cationic monomer were achieved. A reliable method for the quantification of surface amidine and amino groups was developed. It was found that the amount of surface amidine groups provided by the cationic initiator was higher when the amount of cationic monomer added increased. The value for the partition coefficient of the cationic monomer indicated that this polymerizes with the same probability in the water phase as in the particle. The colloidal stability, in terms of critical coagulation concentration, shows that the latexes would be useful as polymeric supports in immunoassays. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3878–3886, 2005  相似文献   

6.
The adsorption of bovine serum albumin (BSA) onto polystyrene latexes bearing various amounts of sugar moieties has been investigated as a function of pH and ionic strength and the results were compared to those for bare polystyrene latexes having negative surface charges. The functionalized latexes were produced by seeded copolymerization of (0.3 μm) liposaccharidic monomer onto polystyrene particles obtained by soap-free emulsion polymerization of styrene using potassium persulfate as initiator. At first, the electrophoretic mobility behavior of the various latexes was examined as a function of pH: a significant decrease was observed in the case of saccharide-containing latex particles compared to the bare particles. The adsorption of BSA onto these latexes exhibited a reduced amount of adsorbed BSA for those latex particles bearing saccharide groups. This adsorbed amount depends on the yield of saccharidic monomer incorporated onto the surfaces of the latex particles.  相似文献   

7.
Nanosized polystyrene latexes with high polymer contents were obtained from an emulsifier-free process by the polymerization of styrene with ionic comonomer, nonionic comonomer, or both. After seeding particles were generated in an initial emulsion system consisting of styrene, water, an ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2-hydroxyethyl methacrylate (HEMA)], and potassium persulfate, most of the styrene monomer or a mixture of styrene and HEMA was added dropwise to the polymerizing emulsion over 6 h. Stable latexes with high polystyrene contents (≤25%) were obtained. The latex particle weight-average diameters were largely reduced (41 nm) by the continuous addition of monomer(s) compared with those (117 nm) obtained by the one-pot polymerization method. Latex particles varied from about 30 to 250 nm in diameters, whereas their molar masses were within 104 to 105 g/mol. The effect of the comonomer concentration on the number of polystyrene particles per milliliter of latex and the weight-average molar masses of the copolymers during the polymerization are discussed. The surface compositions of the latex particles were analyzed by X-ray photoelectron spectroscopy, which indicated that the surface of the latex particles was significantly enriched in NaSS, HEMA, or both. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1634–1645, 2001  相似文献   

8.
This article reports a facile controllable approach to prepare monodisperse nonspherical colloidal particles with cavity structures by one‐pot soap‐free emulsion polymerization of styrene (St), 3‐(trimethoxysilyl)propyl methacrylate (MPS), and acrylic acid (AA). In our strategy, only by varying the feeding time of AA to the as‐polymerized St and MPS, the nonspherical latex particles with single cavity of different surface roughness and multicavity structures could be successfully synthesized. The depth and width of the cavity can be also easily controlled by adjusting the amount of MPS and AA. A possible formation mechanism is proposed on the basis of experimental results. These nonspherical colloidal particles, which have controllable cavity structures, are good building blocks or templates for the construction of functional coating and complex colloidal architectures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1645–1652  相似文献   

9.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
孔祥正 《高分子科学》2012,30(2):278-286
Cationic latexes were prepared through emulsion copolymerization of styrene(St) and butyl acrylate(BA) with a cationic surfactant,cetyl trimethyl ammonium bromide(CTAB).Latex properties,including particle size,size distribution,ζpotential,surface tension and monomer conversion,were determined for latexes prepared with different CTAB amounts. Evolution of these properties during emulsion polymerization was followed in order to understand the mechanism of the particles formation.Results showed that both particle size andζpotential were function of polymerization time and latex solids.Parallel emulsion polymerizations with cationic,anionic charged initiator and charge-free initiators were also carried out,the latex properties were determined at different polymerization time.All these results were attentively interpreted based on the mechanisms of emulsion polymerization,surfactant adsorption and latex particle stabilization.  相似文献   

11.
种子乳液聚合法制备多孔乳胶粒   总被引:15,自引:0,他引:15  
用批量乳液聚合法制备了苯乙烯(St)———甲基丙烯酸甲酯(MMA)二元共聚种子乳液S1以及St MMA 丙烯酸(AA)三元共聚种子乳液S2,通过连续法无皂种子乳液聚合合成了一系列不同AA或MAA(甲基丙烯酸)含量的St、MMA三元共聚乳液.将所得复合胶乳进行碱/酸分步处理,得到具有多孔结构的乳胶粒.用透射电镜对胶粒形态进行了表征,考察了不饱和酸种类和用量、碱处理初始pH值及溶胀剂对胶粒成孔的影响.  相似文献   

12.
Two polymerizable surfactants (surfmers), namely, monododecyl itaconate (MDDI) and monocetyl itaconate (MCI), were synthesized by reacting itaconic anhydride with 1‐dodecanol and cetyl alcohol, respectively. A series of uncrosslinked and crosslinked surface‐carboxylated latexes were prepared from styrene and styrene–divinylbenzene, respectively, using varying amounts of these two surfmers. The latexes were characterized by gravimetry, dynamic light scattering, and conductometric titration in order to obtain the conversion, particle size distribution, and concentration of surface carboxyl groups, respectively. The size of latex varied between 41–72 nm and was seen to depend inversely on the surfmer concentration. In the case of the soluble polystyrene latexes, solution 1H NMR spectra provided conclusive evidence for surfmer incorporation into the polymer chain. Comparison of the incorporation levels determined by NMR with the surface carboxylic acid concentrations in the latexes, determined by conductometric titrations, revealed that the majority of the surfmers, as ancticipated, were present on the latex surface. The study of the stability of the latexes to varying salt concentrations clearly demonstrated that the smaller‐size latexes having higher surface carboxyl group density exhibited far improved stability when compared with the larger‐size ones having lower surface carboxyl group density. Similarly, enhanced freeze‐thaw stability was also observed for the smaller‐size latexes. MCI‐based latexes exhibited marginally improved stability compared with those prepared using MDDI, which again seems to be because of the higher surface functional group density in the former. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3257–3267, 2005  相似文献   

13.
Polystyrene nanoparticles with grafted chains of an amino functionalized polymer were prepared by a two-step polymerization process. In the first step, the polystyrene seed particles were synthesized by the conventional batch emulsion polymerization using terpolymer HAS (hydroperoxide monomer, acrylic acid, and styrene) as a surface-active initiator. The surface of the obtained particles contains carboxyl groups, which are responsible for the latex stability, and residual undecomposed hydroperoxide groups. Therefore, in the second step, an amino functional monomer was grafted onto the hydroperoxide modified polystyrene particles by a "grafting from" approach. X-ray photoelectron spectroscopy, NMR, and scanning electron microscopy were used to examine the surface of the amino functionalized particles. The amount of incorporated amino groups onto the particles was determined by fluorescenometric titration. In general, the number of amino groups on the particle surface increased with the increase of the functional monomer content in the reaction mixture. The incorporation of the functional monomer was also confirmed by electrophoretic measurements. Final particles possess amphoteric character due to the presence of amino and carboxyl groups on the surface. Adsorption of human immunoglobulins G onto the amino functionalized particles was studied as a function of pH and ionic strength. The covalent binding of human IgG was performed using the glutaraldehyde preactivation method. The immunoreactivity of the latex-IgG complex was examined by the latex agglutination test.  相似文献   

14.
Hemiesters and hemiamides of maleic acid with different chain lengths of the hydrophobic alkyl group (R = C8H17, C10H21, C12H25, C16H33) have been synthesized and used as surfactants in the emulsion polymerization of styrene and butyl acrylate. The same polymerization experiments were also carried out using nonreactive surfactants with an analogous succinic structure. The chemical structure of the surfactants was confirmed by 1H nuclear magnetic resonance. The melting point and critical micelle concentration of the reactive surfactants described herein were measured. All of the surfactants studied provided good stability of styrene/butyl acrylate latexes, when compared with a reference latex of a styrene/butyl acrylate copolymer prepared with a surfactant sodium dodecyl sulfate. The amount of surfactant grafted onto the particles of the final latex was estimated by conductimetric titration. Between 33 and 68% of surfactant used in emulsion polymerization was found on the surface of latex particles. Electrolyte addition at high concentration and freeze/thaw cycle cause flocculation of latexes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Gold particles were nucleated on functionalized (i.e., sulfonate or imidazole groups) latex particle surfaces. Gold ions were associated with the functional groups present on the surface of the latex particles by metal‐ligand formation and were then reduced to nucleate gold particles on the particle surface. The use of imidazole groups favored the metal‐ligand formation more effectively compared with sulfonic acid groups, so gold nucleation was investigated on the surface of imidazole‐functionalized model latex particles. The desorption of gold atoms or their surface migration first occurred during the reduction process and then gold nanoparticles were nucleated. The utilization of strong reductants, such as NaBH4 and dimethylamine borane (DMAB) under mildly acidic conditions (i.e., pH 4) led to the deprotonation of imidazole‐rich polymer chains present on the surface of the model latex particles followed by deswelling of hydrophilic polymer surface layers. As a result, well‐dispersed gold nanoparticles were embedded in the hydrophilic polymer surface. On the other hand, the use of weak reductants led to the formation of localized gold aggregates on the surface of the latex particles. The removal of residual styrene monomer is very important because gold ions can be coordinated with the vinyl groups present in styrene monomer and would then be reduced by nucleophilic water addition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 912–925, 2008  相似文献   

16.
将超声技术引入到无皂乳液聚合方法中,在不加入任何引发剂和乳化剂的情况下,制备了丙烯酸丁酯(BA)/苯乙烯(St)/丙烯酰胺(AM)三元共聚纳米乳胶粒.研究了不同超声时间对单体转化率、乳胶粒粒径以及乳液粘度的影响.同时还探讨了超声无皂乳液聚合机理,认为AM在聚合过程中起到了引发和稳定的作用.TEM照片表明,乳胶粒直径大约在80nm左右,FTIR及DSC分析表明产物为三元共聚物,而不是共混物.  相似文献   

17.
Polystyrene–poly(ethylene oxide) PS–PEO di- and triblock copolymers have been used as stabilizers in the emulsion polymerization of styrene and styrene–butylacrylate for the preparation of “hairy latexes”. The polymerization kinetics and the efficiency of these polymeric surfactants were correlated with the molecular characteristics of the block copolymer. It was shown that the efficiency decreased with increasing molecular weight and PS content of the block copolymer. The PEO frige, with a thickness of 4–25 nm, on the latex particle surface could be characterized and it was shown by differential scanning calorimetry (DSC) that water is strucured in that PEO layer. Film formation with “hairy latexes” was also examined both by DSC and thermomechanical analysis. The properties and application possibilities, such as in controlled latex flocculation, have been reviewed.  相似文献   

18.
Monodisperse polar gradient particles were synthesized via a three‐step emulsion polymerization using poly(butyl acrylate‐methyl methacrylate‐methacrylic acid‐ethylene glycol dimethacrylate) (P(BA‐MMA‐MAA‐EGDMA)) as core, poly(methyl methacrylate‐methacrylic acid‐styrene) (P(St‐MMA‐MAA)) as interlayer and polystyrene (PSt) as shell. The particle growth and encapsulation in each emulsion polymerization step were followed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and conductometric titration. Results indicated that the feeding mode and the interlayer were essential to prepare the polar gradient latex particles with hydrophilic core and hydrophobic shell. The morphologies of the two‐layer core/interlayer and three‐layer core/interlayer/shell particles were observed in TEM micrographs, and the sequential encapsulations of the carboxyl‐containing core and the core/interlayer particles were confirmed by an increase in the particle size as well as an increase in the buried carboxyl percentage.  相似文献   

19.
An ambient self‐curable latex (ASCL) was prepared by mixing colloidal dispersions in water of a chloromethylstyrene (CMS)‐functionalized polymer and a tertiary‐amine‐functionalized polymer. The two dispersions were obtained via the conventional emulsion copolymerization of CMS and 2‐(dimethylamino)ethylacrylate (DMAEA), respectively, with styrene (St), butyl acrylate (BA), or both. No visible coagulation was observed either in the blends after 6 months of storage or after the latexes were introduced into aqueous media with pHs in the range of 3–11. Continuous, transparent, crosslinked elastic films with smooth surfaces were obtained via casting and drying the ASCL at room temperature, when one or both of the two functional polymer particles contained BA monomeric units. Thermocompression cycles; swelling experiments; solubility tests; and 1H NMR, IR, DSC, and transmission electron microscopy tests were carried out to investigate the crosslinking and morphology of the films. The following observations were made: (1) the crosslinks in the films were generated via the Menschutkin reaction (quaternization) between the  CH2‐Cl groups of the CMS containing particles and the amine groups of the DMAEA containing particles; (2) the crosslinked films were thermally remoldable due to reversible decrosslinking (dequaternization) on heating and recrosslinking (requaternization) on cooling; and (3) phase separation in the films was observed when one of the functional polymers (for instance, the nonpolar CMS‐St copolymer) was incompatible with the other one (for instance, the polar BA‐DMAEA copolymer). The present ASCL might be useful in producing water‐borne coatings and adhesives, elastic films, and functional membranes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 389–397, 2001  相似文献   

20.
<正>In this study,P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene(St) and methacrylic acid(MAA),then the seed particles were allowed to swell with St at room temperature,and the P(St-MAA)/P(StNaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N'-methylenebisacrylamide(BAA,water-soluble crosslinker).Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%,the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized.When the 25/75 mole ratio of NaSS/(St + MAA) and 2 mol%of BAA were used in the seeded emulsion polymerization,the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction,and the NaSS unit content in the whole particle and in the shell reached 11.7 mol%and 34.6 mol%,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号