首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,3‐Dithiane and its derivatives are widely used as powerful acyl anion equivalent to a range of useful transformations that are needed in the synthesis of natural products. In this work, a series of polyolefins containing pendant dithiane groups have been designed and synthesized via acyclic diene metathesis polymerization (ADMET) polymerization and subsequent hydrogenation. The structures of these polymers were characterized by 1H NMR, 13C NMR, and FT‐IR, and successful incorporation of the dithiane groups was proved. With different contents of the dithiane moieties, these ADMET polymers exhibited distinct thermal properties different from each other as evidenced by differential scanning calorimetry and thermal gravimetric analysis. The dithiane units in the ADMET polymer with 20 methylene carbons between the adjacent dithiane groups were transformed into thiol groups via reaction with Bu3SnH. This work provided a convenient route to synthesize polyethylene with pendant thiol groups that are evenly distributed in the chain. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2468–2475  相似文献   

2.
Novel polyesteramides were synthesized by copolymerization in bulk of 5-(4,5-dihydro-1,3-oxazol-2-yl)-1-pentanol and various cyclic dicarboxylic acid anhydrides at temperatures varying between 120 and 200°C. The polymers resulting from polycondensation were characterized by means of 1H–NMR, FTIR, MALDI–TOF–MS, SEC, and DSC. The glass transition temperatures, Tg, of the copolymers were varied between −28 and +31°C as a function of the anhydride type. Molecular weights, Mw, were dependent on reaction temperature, reaction time, and anhydride type. Spectroscopic investigation of reaction products and esteramide model compounds provided evidence for imide by-product formation, which accounts for the low degree of polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3367–3376, 1999  相似文献   

3.
Photoinitiated polymerization of 4-methylene-2-phenyl-1,3-dioxolane ( 1 ) was carried out using either tris (4-methylphenyl) sulfonium hexafluoroantimonate or 4-decyloxyphenyl phenyliodonium hexafluoroantimonate as initiators. 1H-NMR analyses confirmed exclusive ring-opening while DSC and SEC were used to determine the glass transition temperatures (Tgs) and molecular weights, respectively. Photoinitiated cationic copolymerizations of 1 were investigated with several acyclic and cyclic monomers. Copolymerization of 1 with vinyl ethers and a spiroorthoester resulted in copolymers whose thermal properties were dependent on comonomer ratios. Copolymers of 1 and dihydrofuran or dihydropyran afforded soluble polymers with Tgs significantly higher than the homopolymer of 1 . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2207–2219, 1997  相似文献   

4.
Carbon black-supported sulfuric acid or BF3·Et2O-initiated polymerizations of 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (1), 2-methylene-4-phenyl-1,3-dioxolane (2), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (3) were performed. 1,2-Vinyl addition homopolymers of 1–3 were produced using carbon black-supported H2SO4 initiation at temperatures from 0°C to 60°C whereas both ring-opened and 1,2-vinyl structural units were present in the polymers using BF3·Et2O as an initiator. Cationic polymerizations of 2-methylene-1,3-dithiolane (4) and copolymerization of 4 with 2-methylene-4-(t-butyl)-1,3-dioxolane (5) were initiated with either carbon black-sulfuric acid or BF3·Et2O. Insoluble 1,2-vinyl addition homopolymers of 4 were obtained upon initiation with the supported acid or BF3·Et2O. A soluble copolymer of 2-methylene-1,3-dithiolane (4) and 4-(t-butyl)-2-methylene-1,3-dioxolane (5) was obtained upon BF3·Et2O initiation. This copolymer is composed of three structural units: a ring-opened dithioester unit, a 1,2-vinyl-polymerized 1,3-dithiolane unit, and a 1,2-vinyl polymerized 4-(t-butyl)-1,3-dioxolane unit. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2823–2840, 1999  相似文献   

5.
A kinetic study was carried out on the acetalization reaction of 1,3-butanediol, as a model compound for poly(vinyl alcohol) (PVA), in water, under acidic conditions. Since these equilibrium constants of ketalization reaction of 1,3-butanediol and ethylene glycol are so small, the kinetic parameters were estimated from the hydrolysis reactions of the corresponding ketals. It was made clear that these reactions proceed in the reversible bimolecular reaction, and the heat of reaction and activation energy are nearly equal to that of PVA. The rate constants of hydrolysis reaction (k′s) of model compounds were calculated on the basis of value of acetone ketal, Hammett-Taft's equation log k′s/k′so – 0.54(n – 6) = ρ*σ* was established, and the value of ρ* was obtained (3.60), which coincided with the value of PVA. Therefore, it was made clear that the hydrolysis reactions of acetals and ketals are electrophilic reaction (SE II reaction) and the step of rate determination is the formation of hemiacetal and hemiketal. The rate constants of hydrolysis reaction of 1,3-butanediol acetals and ketals were approximately 10–20 larger, and those of ethylene glycol were approximetly 50–80 larger except for ketals, and those of ethanol were roughly 2000–10,000 larger compared with that of high-molecular weight compound (PVA). It can be well explained that these differences in the rate constant depend on their entropy and the mobility of molecules. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1719–1931, 1997  相似文献   

6.
This article deals with the preparation of novel co‐oligoethers constituted with 1,3‐propanediol (PDO) and isosorbide units and, prepared according to two different melt processes, without any solvent in the presence of acid catalyst: co‐etherification of PDO and isosorbide (process A) and, trans‐etherification between polytrimethylene ether glycol (PTEG) and isosorbide (process B). Complementary analytical methods: D and 2D 1H NMR and gas chromatography analysis, coupled with FID and MS‐MALDI‐TOF mass spectrometry, were performed to precisely define the microstructure of the final products. In particular, one can observe that two mechanisms involve during the reaction: etherification and trans‐etherification where isosorbide reacts decreasing the molar mass of polymers chains. This led to oligomers having isosorbide units at each extremity and little inner isosorbide units. Computational calculations have been performed in parallel, and the data well duplicate the experimental results. Finally, it was shown that these new telechelic oligoethers have higher compatibility to water and higher Tg level and thermal stability than PTEG homopolymer. Therefore, such oligomers can be considered as new intermediates for designing new surfactants and/or new copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2178–2189  相似文献   

7.
2,2-Dibutyl-2-stanna-1,3-dioxepane (DSDOP) was used as cyclic initiator for the polymerization of trimethylene carbonate (TMC). The polymerizations were either conducted in concentrated chlorobenzene solution at 50 and 80°C or in bulk at 60 and 120°C. With monomer/initiator ratios ≤100 the conversion was complete within 2 h at 80°C and within 12 h at 50°C. Variation of the reaction time revealed that the rapid polymerization is followed by a relatively rapid (backbiting) degradation even at 80°C. The polymerizations in bulk at 60°C were somewhat slower than those at 80°C in solution, but the influence of degradation reactions was less pronounced. With optimized reaction time the number average molecular weight (Mn) roughly parallels the monomer/initiator ratio and Mn's up to 100,000 were obtained. In contrast to a classical living polymerization broader polydispersities (1.5–1.7) were found. In the case of 5,5-dimethyltrimethylene carbonate rapid degradation and chain transfer reactions prevented the formation of high molecular weight polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2179–2189, 1999  相似文献   

8.
The solubility, diffusivity, and permselectivity of 1,3-butadiene and n-butane in seven different polyimides synthesized from 2,2-bis (3,4-carboxyphenyl) hexafluoropropane dianhydride (6FDA) were determined at 298 K. The influence of chemical structures on physical and gas permeation properties of 6FDA-based polyimides was studied. Solubility of 1,3-butadiene in 6FDA-based polyimides can be described by a dual-mode sorption model. 1,3-Butadiene-induced plasticization is considered to be associated with the increasing permeabilities of 1,3-butadiene and n-butane and the decreasing permselectivity of 1,3-butadiene vs. n-butane in the mixed gas system containing a high concentration of 1,3-butadiene. It was found that controlling the solubility of 1,3-butadiene in an unrelaxed volume in 6FDA-based polyimides is very important to maintain the high permselectivity of 1,3-butadiene vs. n-butane in the mixed gas system. Changing the  C(CF3)2 linkage to a  CH2 ,  O linkage, removing methyl substituents at the ortho position of the imide linkage, and changing the p-phenylene linkage to an m-phenylene linkage in the main chains in some 6FDA-based polyimides are effective to decrease fractional free volume and restrict the solubility of 1,3-butadiene in the unrelaxed volume of a polymer matrix. The 6FDA-based polyimides restricting the solubility of 1,3-butadiene in an unrelaxed volume exhibit high separation performance in the 1,3-butadiene/n-butane mixed gas system compared with conventional glassy polymers and, therefore, are potentially useful membrane materials for the separation of 1,3-butadiene and n-butane in the petrochemical industry. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2941–2949, 1999  相似文献   

9.
Aliphatic polyimides containing adamantyl units (APIs) were prepared by the poly(addition/condensation) of a dianhydride bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic 2,3 : 5,6-dianhydride with a rigid diamine, 1,3-diaminoadamantane or 3,3′-diamino-1,1′-biadamantyl, and a flexible diamine, 4,4′-methylenebis(cyclohexylamine) or 1,4-cyclohexanediamine. One-step polymerizations were conducted at 80–200°C in m-cresol, producing APIs with inherent viscosities up to 0.53 dL g−1. These APIs are soluble in haloalkanes, m-cresol, and sulfuric acid and show high thermal stability and excellent transparency. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3584–3590, 1999  相似文献   

10.
Photoactive N‐alkoxy 4‐phenyl pyridinium and N‐alkoxy isoquinolinium ion terminated polystyrenes with hexafluoroantimonate counter anion were prepared and characterized. For this purpose, mono‐ and dibrominated polystyrenes were prepared by atom transfer radical polymerization (ATRP). The reaction of these polymers with silver hexafluoroantimonate in the presence of 4‐phenylpyridine N‐oxide and isoquinoline N‐oxide in dichloromethane produced desired polymeric salts with the corresponding functionalities. Irradiation of these photoactive polystyrenes produced alkoxy radicals at chain ends capable of initiating free radical polymerization of methyl methacrylate (MMA). This way, depending on the number of functionality, AB or ABA type block copolymers were formed which were characterized with the aid of gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 423–428, 2007.  相似文献   

11.
Pure 1,2-addition polymers, poly(2-methylene-1,3-dioxolane), 1b , poly(2-methylene-1,3-dioxane), 2b , and poly(2-methylene-5,5-dimethyl-1,3-dioxane), 3b , were prepared using the cationic initiators H2SO4, TiCl4, BF3, and also Ru(PPh3)3Cl2. Small ester carbonyl bands in the IR spectra of 1b and 2b were observed when the polymerizations were performed at 80°C ( 1b ) and both 67 and 138°C ( 2b ) using Ru(PPh3)3Cl2. The poly(cyclic ketene acetals) were stable if they were not exposed to acid and water. They were quite thermally stable and did not decompose until 290°C ( 1b ), 240°C ( 2b ), and 294°C ( 3b ). Different chemical shifts for axial and equatorial H and CH3 on the ketal rings were found in the 1H NMR spectrum of 3b at room temperature. High molecular weight 3b (M̄n = 8.68 × 104, M̄w = 1.31 × 105, M̄z = 1.57 × 105) was obtained upon cationic initiation by H2SO4. Poly(2-methylene-1,3-dioxane), 2b , underwent partial hydrolysis when Ru(PPh3)3Cl2 and water were present in the polymer. The hydrolyzed products were 1,3-propanediol and a polymer containing both poly(2-methylene-1,3-dioxane) and polyketene units. The percentages of these two units in the hydrolyzed polymer were about 32% polyketene and 68% poly(2-methylene-1,3-dioxane). No crosslinked or aromatic structures were observed in the hydrolyzed products. The molecular weight of hydrolyzed polymer was M̄n = 5740, M̄w = 7260, and M̄z = 9060. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3707–3716, 1997  相似文献   

12.
The anionic polymerization of (E)‐1,3‐pentadiene (EP) and (Z)‐1,3‐pentadiene (ZP) together with mixture of the E/Z isomers are investigated, respectively. The kinetic analysis shows that the activation energy for EP (86.17 kJ/mol) is much higher than that for ZP (59.03 kJ/mol). GPC shows that it is the EP rather than the ZP isomer that undergoes anionic living polymerization affording quantitative products of the polymers with well‐controlled molecular weights and narrow molecular weight distributions (1.05 ≤? ≤ 1.09). In addition, THF as polar additive has proved its validity to reduce the molecular weight distribution of poly(ZP) from 1.38 to as low as 1.19. The microstructure and sequence distributions of polypentadiene are characterized by 1H NMR and quantitative 13C NMR. Finally, the distinctive reaction activity of two isomers can be elucidated by two different mechanisms which involve the presence of four forms of zwitterions for EP and the typical [1,5]‐sigmatropic hydrogen‐shift phenomenon for ZP. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2291–2301  相似文献   

13.
The living synthesis of poly(1,3‐cyclohexadiene) was performed with an initiator adduct that was synthesized from a 1:2 (mol/mol) mixture of N,N,N,N′‐tetramethylethylenediamine (TMEDA) and n‐butyllithium. This initiator, which was preformed at 65 °C, facilitated the synthesis of high‐molecular‐weight poly(1,3‐cyclohexadiene) (number‐average molecular weight = 50,000 g/mol) with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.12). A plot of the kinetic chain length versus the time indicated that termination was minimized and chain transfer to the monomer was eliminated when a preformed initiator adduct was used. Chain transfer was determined to occur when the initiator was generated in situ. The polymerization was highly sensitive to both the temperature and the choice of tertiary diamine. The use of the bulky tertiary diamines sparteine and dipiperidinoethane resulted in poor polymerization control and reduced polymerization rates (7.0 × 10−5 s−1) in comparison with TMEDA‐mediated polymerizations (1.5 × 10−4 s−1). A series of poly(1,3‐cyclohexadiene‐block‐isoprene) diblock copolymers were synthesized to determine the molar crossover efficiency of the polymerization. Polymerizations performed at 25 °C exhibited improved molar crossover efficiencies (93%) versus polymerizations performed at 40 °C (80%). The improved crossover efficiency was attributed to the reduction of termination events at reduced polymerization temperatures. The microstructure of these polymers was determined with 1H NMR spectroscopy, and the relationship between the molecular weight and glass‐transition temperature at an infinite molecular weight was determined for polymers containing 70% 1,2‐addition (150 °C) and 80% 1,4‐addition (138 °C). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1216–1227, 2005  相似文献   

14.
Ethyl α‐chloromethylacrylate was converted to an ester derivative using 5‐chlorovaleric acid in a single step. The homopolymerization of the new monomer (CEMA) and its copolymerization with methyl methacrylate were performed using photoinitiator Irgacure 651. The polymers were reacted with N,N‐dimethyldodecylamine to obtain polymers with pendant quaternary ammonium (QA) moieties. The polymers with pendant QA groups were used in self‐catalyzed phase transfer reactions with sodium phenoxide and 1‐dodecanethiol. The syntheses of the monomer and polymers were followed by FTIR, 1H NMR, and 13C NMR. The average polymer molecular weights and polydispersities were determined by size exclusion chromatography. Thermal analysis was carried out using thermogravimetric analysis and differential scanning calorimetry. The copolymer composition, degree of quaternization, and degree of conversion in phase transfer reaction were determined by 1H NMR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5844–5854, 2005  相似文献   

15.
A series of highly sulfonated, ether‐containing polybenzimidazoles (SOPBI) with controlled sulfonation degrees were synthesized from various stoichiometric ratio mixtures of sodium 6,6'‐oxybis(3‐carboxybenzenesulfonate) (SODBA), 4,4'‐oxydibenzoic acid (ODBA), and 3,3'‐diaminobenzidine (DAB) by solution copolycondensation in poly(phosphoric acid). The resulting sulfonated polymers were further sulfonated by grafting of pendant sulfonic acid chains via a reaction of 1,3‐propane sultone with lithiated‐N of the imidazole rings in the polymer backbone, yielding materials with high, absolute IEC values (3.42–4.15 meq g?1). Due to self‐neutralization, the solid state polymers possessed “free” acid content of 1.40 to 2.15 meq g?1, were soluble in organic solvents yet insoluble in aqueous solution, while displaying proton conductivites (11–47 mS cm?1) at elevated temperatures (80 °C, 95% RH). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3654–3666  相似文献   

16.
New aromatic diamines [(1) and (2)] containing polycycloalkane structures between two benzene rings were synthesized by HCl-catalyzed condensation reaction of aniline hydrochloride and corresponding polycycloalkanone derivatives. The structures of diamines were identified by 1H-NMR, 13C-NMR, FTIR spectroscopy, and elemental analysis. The polyimides were synthesized from the obtained diamines with various aromatic dianhydrides by one-step polymerization in m-cresol. The inherent viscosities of the resulting polyimides were in the range of 0.34–1.02 dL/g. The polyimides showed good thermal stabilities and solubility. All the polymers were readily soluble in N-methyl-2-pyrrolidone, m-cresol, tetrachloroethane, etc. Some of them were soluble even in chloroform at room temperature. The glass transition temperatures were observed in the range of 323–363°C, and all of the polymers were stable up to 400°C under nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3449–3454, 1999  相似文献   

17.
Polymerization of a trimethylene carbonate (TMC) in an aqueous solution was investigated by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance. The polymerization reaction proceeded rapidly in the aqueous solution and high conversion was achieved in a relatively short time. 1,3‐Propanediol (PPD) formed by hydrolysis of TMC was used as the initiator. The TMC oligomer obtained by ring‐opening polymerization had a TMC unit backbone with terminal 3‐hydroxypropyl groups at both chain ends. The oligomer underwent transesterification reaction with elimination of PPD, resulting in a gradual increase in the molecular weight of the product. The molecular weight was affected by the concentration of TMC. The thermal properties of the polymers were investigated by differential scanning calorimetry. Polymers within the molecular weight (Mn) range from 6.0 × 103 to 2.3 × 104 g/mol crystallized, and endothermic peaks corresponding to the melting temperature were observed. The glass transition temperature increased with the molecular weight of the polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1485–1492, 2010  相似文献   

18.
The new monomer, 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl-5-fluorouracil (ETPFU), was synthesized by the reaction of 5-fluorouracil (5-FU) and 3,6-endo-methylene-1,2,3,6-tetrahydrophthalimidopropanoyl chloride (ETPC). The homopolymer of ETPFU and its copolymers with acrylic acid (AA) and vinyl acetate (VAc) were prepared by photopolymerizations. The synthesized ETPFU and polymers were identified by Fourier transfer infrared (FTIR), 1H nuclear magnetic resonance (NMR), and 13C-NMR spectroscopies. The contents of ETPFU units in poly(ETPFU-co-AA) and poly(ETPFU-co-VAc) were 26 and 32 mol %, respectively. The number average molecular weights of the synthesized polymers determined by gel permeation chromatography (GPC) were in range from 8,800 to 10,700. The in vitro cytotoxicities of the samples were evaluated with mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) as a cancer cell line and mouse liver cells (AC2F) as a normal cell line. The in vivo antitumor activities of polymers against Balb/c mice bearing the sarcoma 180 tumor cells were greater than those of 5-FU at all doses tested. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2113–2120, 1999  相似文献   

19.
Dimethyl bicyclobutane‐1,3‐dicarboxylate was synthesized. Its homopolymer (PDBD) containing exclusively cyclobutane rings in its backbone was prepared by free radical polymerization. The copolymers of this bicyclobutane monomer with methyl methacrylate were also prepared. The glass transition temperature of the homopolymer is 159°C, while those of its copolymers are 143 and 121°C with 75/25 and 50/50 of the P(DBD/MMA) composition ratio, respectively. The Tg of PDBD homopolymer is substantially higher than that of commercial PMMA homopolymer despite a lower molecular weight, and is also much higher than that of its monomethyl cyclobutanecarboxylate analogue. These DBD homopolymer and copolymers also show better thermostability than the PMMA homopolymer. The weight‐average molecular weight of homopolymer is 37,000. The polydispersities of these polymers are relatively narrow, with the range of 1.6–1.9. These polymers form clear colorless films resembling PMMA film. The DBD homopolymer film shows a very similar optical cutoff compared to PMMA. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1569–1575, 1999  相似文献   

20.
Novel poly(silylenemethylenes) have been prepared by the ring-opening polymerization of 1,3-disilacyclobutanes followed by a protodesilylation reaction with triflic acid. The silicon–aryl bond cleavage could be controlled by using different leaving groups, for instance phenyl- and para-anisyl substituents. The reactions of the triflate derivatives with organomagnesium compounds, LiAlH4, amines, or alcohols gave functional substituted poly(silylenemethylenes). Hydrosilylation reactions or reductive coupling with potassium–graphite led to organosilicon network–polymers, which may serve as suitable precursors for silicon carbide and Si/C/N-based materials. The structures of the polymers were identified by NMR spectroscopy (29Si, 13C, 1H). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 725–735, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号