首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphologies of extended‐chain crystals with different characteristics were observed with scanning electron microscopy (SEM) in the high‐pressure crystallized polyethylene terephthalate/polycarbonate (PET/PC) blends. The crystals memorize their nucleation and growth process, which reveal an involvement of different mechanisms simultaneously. The presence of sliding diffusion during crystal thickening is indicated by a wedge shape of some crystals, while bent crystals suggest the occurrence of transesterification in the formation of the large extended‐chain crystals. The observation of two morphological features on one group of crystals shows that two mechanisms may work simultaneously. The connection between folded‐chain and extended‐chain crystals is demonstrated by the S‐shaped extended‐chain crystals as well as their direct morphological connection observed with SEM. Though transesterification plays the essential role in the formation of the large crystals, which acts in different aspects during the process, the thermodynamic driving force is the enthalpy gain associated with large crystals. This is a high‐pressure self‐assembly with a coupling between crystallization and transesterification, which may be instructive to grow such large crystals in similar polymer systems. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3148–3156, 2006  相似文献   

2.
The morphology dynamics of two‐dimensional nanosheets under extensional flow are investigated using a coarse‐grained model. Nanosheets (graphene, BNNS, MX2) are promising materials for a variety of materials and electronics applications. Extensional flow fields are often present during dispersion processing, such as spin coating. Both nanosheet properties (e.g., moduli, size) and processing parameters (e.g., extension rate) can have a significant impact on the nanosheet morphology and thus, the structure and properties of the bulk material. Our previously developed dimensionless Brownian dynamics methodology is used to explore biaxial extensional flow. Nanosheets exhibit a flat conformation under extensional flow for high bending moduli and an extended “washrag” conformation for low bending moduli. Intrinsic extensional viscosity increases with strain before reaching a plateau. The intrinsic viscosity exhibits a weak power law with nanosheet molecular weight. These simulation results allow for experimental control over morphology as a function of nanosheet properties and flow type and strength. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1247–1253  相似文献   

3.
A hydrodynamic scattering treatment of interacting polymer chains is extended to obtain the five‐point chain–chain–chain–chain–chain hydrodynamic interaction tensor. The tensor is used to calculate the second‐order concentration correction to the self‐diffusion coefficient of a polymer in solution. The self‐similarity assumption of the hydrodynamic scaling model of polymer dynamics is tested against these calculations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1663–1670, 2004  相似文献   

4.
The melting and crystallization of extended‐chain crystals of polyethylene are analyzed with standard differential scanning calorimetry and temperature‐modulated differential scanning calorimetry. For short‐chain, flexible paraffins and polyethylene fractions up to 10 nm length, fully reversible melting was possible for extended‐chain crystals, as is expected for small molecules in the presence of crystal nuclei. Up to 100 nm length, full eutectic separation occurs with decreasingly reversible melting. The higher‐molar‐mass polymers form solid solution crystals and retain a rapidly decreasing reversible component during their melting that decreases to zero about 1.5 K before the end of melting. An attempt is made to link this reversible melting to the known, detailed morphology and phase diagram of the analyzed sample that was pressure‐crystallized to reach chain extension and practically complete crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2219–2227, 2002  相似文献   

5.
A theoretical approach has been developed to describe the sorption and diffusion processes of low weight molecular gases and vapors in polymers at wide ranges of sorbate concentration. The equation of an S‐shaped gas sorption isotherm in glassy polymer matrix has been derived. The concentration dependence of the sorbate molecule diffusion coefficient has been established. For an S‐shaped sorption isotherm, this dependence is nonmonotonous. The conditions of cluster formation of sorbate molecules have been analyzed within the proposed approach, in which it is possible to determine a correlation between these conditions and parameters of sorption isotherm. The comparison of the experimental and theoretical data provides an assessment of the microscopic characteristics of investigated polymer–vapor systems, such as the distances between vapor molecules in a matrix corresponding to intermolecular repulsion and attraction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2314–2323, 1999  相似文献   

6.
The diffusion, solubility, and permeability behavior of oxygen and carbon dioxide were studied in amorphous and semicrystalline syndiotactic polystyrene (s‐PS). The crystallinity was induced in s‐PS by crystallization from the melt and cold crystallization. Crystalline s‐PS exhibited very different gas permeation behavior depending on the crystallization conditions. The behavior was attributed to the formation of different isomorphic crystalline forms in the solid‐state structure of this polymer. The β crystalline form was virtually impermeable for the transport of oxygen and carbon dioxide. In contrast, the α crystalline form was highly permeable for the transport of oxygen and carbon dioxide. High gas permeability of the α crystals was attributed to the loose crystalline structure of this crystalline form containing nanochannels oriented parallel to the polymer chain direction. A model describing the diffusion and permeability of gas molecules in the composite permeation medium, consisting of the amorphous matrix and the dispersed crystalline phase with nanochannels, was proposed. Cold crystallization of s‐PS led to the formation of a complex ordered phase and resulted in complex permeation behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2519–2538, 2001  相似文献   

7.
The temperature–concentration phase (Tc) diagrams of the uniform n-alkanes C102H206, C122H246, C162H326, and C198H398 in toluene have been determined for solution concentrations in the range 0.1 to 6% (w/w). The shorter alkanes display a “classical” behavior with the expected, strong dependence of dissolution temperature on solution concentration. The longest alkane displays a very different, “polymeric” type behavior with a concentration independent dissolution temperature (for both extended and folded chain crystals). It is argued that no current theory of polymer dissolution is able to explain this behavior. It is suggested that a locally higher concentration occurs when molecules are partially attached to a crystal either during crystallization or dissolution, and that this increased local concentration accounts for the independence of dissolution temperature on the global concentration. There are some small variations in the dissolution temperature of crystals of the same thickness grown at the same concentration, but at different temperatures. These are ascribed to differences in the stacking of the separate layers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3188–3200, 1999  相似文献   

8.
Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1492–1506  相似文献   

9.
Chain coherence length of rigid‐rod poly(p‐phenylene benzobisthiazole) (PBZT) and its derivatives in the solid state was determined from the wide‐angle X‐ray diffraction patterns of axially disordered crystal. The degree of the PBZT main chain extension was estimated from the coherence lengths and was compared to investigate the effects of side chain, orientation, heat treatment, and polymer solution concentration. Extremely small coherence length obtained from both highly oriented fibers and powder or bulk PBZT homopolymer suggested that a chain conformation deviated from the fully extended conceptual rigid‐rod, supporting the ribbon‐like conformation, as was previously predicted by molecular dynamic simulation. The deviation was also found to be highly dependent on the processing conditions. Fibers stretched during spinning exhibited much greater chain extension than the isotropic powder, the bulk, and fibers spun without tension. The chain extension was also dependent on the solution concentration prior to the processing. The PBZT produced from solution above the critical concentration exhibited higher chain extension than those from below the critical concentration. However, side chain attachment to the PBZT main chain or post‐heat treatments showed a minimal effect on the extension of the PBZT backbone. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 661–666, 1999  相似文献   

10.
The high‐pressure crystallized poly(ethylene terephthalate) samples were investigated with scanning electron microscopy. The striation appearance, which is the most common feature of polymer extended‐chain crystals, was clearly observed. Poly(ethylene terephthalate) extended‐chain crystals with thickness up to 17 m were obtained at high pressure. Fibrous crystals were also formed at high pressure. The fracture behaviors, which affected the exposure of the striations, were also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1612–1616, 2000  相似文献   

11.
Gas transport and thermodynamic properties for the blends of polycarbonate (PC) and polymethylmethacrylate (PMMA) were studied. To explore glass transition temperatures of blends and their phase separation temperatures due to a lower critical solution temperature, LCST, a type of phase boundary, transparent blend films that are miscible and do not contain solvent-induced PC crystals were prepared by controlling molecular weights of each component. The average value of interaction energy densities between PC and PMMA obtained from the phase boundaries and the equation of a state theory based on the lattice fluid model was 0.04 cal/cm3. This result confirmed that miscibility of PC and PMMA blends at equilibrium depends upon the molecular weights of components. Gas transport properties of miscible blends and immiscible blends having the same chemical components and composition but a difference in morphology were examined at 35°C and 1 atm for the gases N2 and O2. Permeability and apparent diffusion coefficients were ranked in the order of the immiscible blend having a domain–matrix structure > the immiscible blend having an interconnected structure > the miscible blend. These results might be related to the differences in the local chain motions that depend on the intermolecular mixing level. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2950–2959, 1999  相似文献   

12.
Equilibrium crystals of linear macromolecules have an extended‐chain macroconformation. They can melt at the equilibrium melting temperature, whereas crystallization needs considerable supercooling, even in the presence of crystal nuclei, making the overall phase transition irreversible. The same molecules with a metastable, chain‐folded macroconformation may have a large amount of specific reversibility, that is, a fraction of the same polymer molecule that melts irreversibly may also show decoupled, reversible melting. The overall metastable, nanophase structure of such semicrystalline polymers may thus support local equilibria. The tool for the quantitative analysis is quasi‐isothermal temperature‐modulated calorimetry that can separate reversible from irreversible processes. A major review of the study of crystals of more than 20 polymers has been published. On the basis of this extensive body of information, a first discussion of decoupling of parts of macromolecules is attempted and linked to previous studies of phase equilibria. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1275–1288, 2004  相似文献   

13.
We describe a new technique for producing fibrous crystals from shear-induced crystallization of polymer solutions and polymer melts. Our technique makes use of a modified version of the 4-Roller apparatus originally developed by G. I. Taylor to study the formation of emulsions. This apparatus generates a planar extensional flow field in which macromolecules are extended more easily than in flow fields with transverse velocity gradients.  相似文献   

14.
A numerical approach, based on the configurational distribution function of a polymer chain in flow, has been used to calculate the zero-shear rheological properties. Starting from a bead-spring representation of the chain, the stiffness is introduced by repulsive springs between next-nearest neighbors. The connection to models based on the bending equation and their limitation is discussed. To obtain a correct model of a semiflexible chain, an inhomogeneous spring constant has to be used. Calculations have been carried out for the free draining case, and a simple relation between the intrinsic viscosity, the translational diffusion coefficient and the persistence length for arbitrary solvent conditions is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1995–2003, 1998  相似文献   

15.
The polymer polyvinylchloride has been studied in binary solvent mixtures and as a function of temperature in solution. A discontinuity of the polymer chain dimensions has been observed, as measured by hydrodynamic methods. This phenomenon is further examined by infrared and Raman spectroscopy. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1351–1356, 1999  相似文献   

16.
The specific rate constant for the termination reaction between two flexible polymer molecules with active chain ends has been considered in relation to the segmental diffusion of chain ends in solution. The probability of reaction between two chain ends per unit time when the centers of gravity of two polymer molecules are at a distance of separation has been calculated by using the Smoluchowski equation and a Gaussian distribution of chain ends. The time during which two polymer molecules are in contact has also been calculated by using the diffusion equation and the potential energy function for intermolecular interaction. The rate constant may then be completely expressed as a complex function of the intramolecular linear expansion factor, molecular weight, and the frictional properties of the reacting polymers' segment. This expression predicts that the rate constant is inversely proportional to solvent viscosity, decreasing with increasing molecular weight to some extent, and is affected by the excluded volume effect and chain flexibility. The complete expression for the rate constant has been simplified and the result compared with experimental data. Close agreement is found between the calculated rate constants and those experimentally obtained.  相似文献   

17.
Photon correlation spectroscopy in both polarized and depolarized geometry was employed to investigate the dynamics of a ribbon‐type polymer exhibiting good solubility. In dilute solution, the translational diffusion for all examined molecular weights has confirmed the picture of wormlike chains with rather short (∼ 7 nm) persistence length (Macromolecules 1997, 30, 273). In the semidilute regime, the total concentration fluctuations display, besides the fast dominant cooperative diffusion, a second slower diffusive process that exhibits weak concentration dependence and is not related to the self‐diffusion measured by pulse‐field‐gradient NMR. The concentration dependence of the cooperative and the self‐diffusion coefficient as well as of the zero‐shear viscosity cannot be consistently described by neither flexible nor stiff chain models. Presence of aggregates was revealed at high concentrations. Owing to the short persistence length, the rotational diffusion is too fast to be adequately investigated. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2211–2220, 1999  相似文献   

18.
Redox polymerizations of acrylic acid in inverse dispersion and in aqueous solution (with surfactant) were conducted by using sodium metabisulphite/potassium bromate initiators. The monomer conversions were determined by using high‐performance liquid chromatography, and the polymer particles in the final lattices were examined using a scanning electron microscope with freeze‐fracture equipment. Experimental rate expressions implied that complex reactions are involved in the redox polymerizations. A chemical reaction scheme was proposed, and kinetic models were developed for the redox polymerization in aqueous solution. Comparison between the experimental rate expressions and the kinetic models suggested a combination of bimolecular and monomolecular termination modes, a chain transfer function of the surfactant, and an oxidizing role of the oxygen molecules. The differences in the experimental rate expressions between the redox polymerization in inverse dispersion and that in aqueous solution are in good agreement with the kinetic model predictions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 313–324, 1999  相似文献   

19.
Novel aromatic poly(etheraroylhydrazides), PEHZ, incorporating a methylenic sequence (with number of  CH2 units m = 2, 4, 6, 8, 10, 12) in the main chain, have been obtained by solution polycondensation and characterized with several techniques. In particular, Differential Scanning Calorimetry (DSC) and Wide Angle X‐ray Scattering (WAXS) gave interesting results. The complex thermal behavior and the lattice parameters of these linear polyhydrazides are a function of the number of methylene units present in the flexible segment. The relationships we found suggest a model: a polymer with disorder in aliphatic segment layers while preserving chain periodicity, that is the classical model of “conformationally disordered crystalline” polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1687–1701, 1999  相似文献   

20.
Examples are given for the application of fluorescence to the study of the following polymer problems: (a) the excluded volume effect as reflected in the kinetics of interpolymer reactions; (b) evidence for the microheterogeneity of polymer solutions; (c) kinetics of conformational transitions of polymer chain backbones. (d) Interpenetration of polymer chains; (e) the structure and molecular association of polymers in water solution; (f) ionomer behavior; (g) the “antenna effect.” © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1725–1735, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号