首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

2.
A novel bis(ether anhydride) monomer, 3,6‐bis(3,4‐dicarboxyphenoxy)benzonorbornane dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile with 3,6‐dihydroxybenzonorbornane in the presence of potassium carbonate, followed by the alkaline hydrolysis of the intermediate bis(ether dinitrile) and the cyclodehydration of the resulting bis(ether diacid). A series of poly(ether imide)s bearing pendant norbornane groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were 0.81–1.81 dL/g. The poly(ether imide) with m‐phenylenediamine as a diamine showed good organosolubility. Most of the cast poly(ether imide) films have had high tensile strengths and moduli. The glass‐transition temperatures of these poly(ether imide)s, except for those from rigid p‐phenylenediamine and benzidine, were recorded between 211 and 246 °C by differential scanning calorimetry. The softening temperatures of all the poly(ether imide) films stayed within 210–330 °C according to thermomechanical analysis. No polymers showed significant decomposition before 500 °C in a nitrogen or air atmosphere. A comparative study of the properties with the corresponding poly(ether imide)s without pendant substituents was also made. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1712–1725, 2002  相似文献   

3.
Four series of poly(o-hydroxy amide)s were prepared by the low-temperature solution polycondensation of the bis(ether benzoyl chloride)s extended from hydroquinone and its methyl-, tert-butyl-, or phenyl-substituted derivatives with three bis(o-aminophenol)s. Most of the poly(o-hydroxy amide)s displayed an amorphous nature, were readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), and could be solution-cast into flexible and tough films. These poly(o-hydroxy amide)s had glass transition temperatures (Tg) in the range of 152–185°C and could be thermally cyclodehydrated into the corresponding polybenzoxazoles approximately in the region of 200–400°C, as evidenced by the DSC thermograms. The thermally converted benzoxazole polymers exhibited Tgs in the range of 215–247°C and did not show significant weight loss before 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2129–2136, 1999  相似文献   

4.
A series of poly(ether imide)s (PEIs), III a–k , with light color and good physical properties were prepared from 1,4‐bis(3,4‐dicarboxypheoxy)‐2,5‐di‐tert‐butylbenzene dianhydride ( I ) with various aromatic diamines ( II a–k ) via a conventional two‐stage procedure that included a ring‐opening polyaddition to yield poly(amic acid)s (PAA), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00–1.53 dL g?1. Most of the PEIs showed excellent solubility in chlorinated solvents such as dichloromethane, chloroform, and m‐cresol, but did not easily dissolve in dimethyl sulfoxide and amide‐type polar solvents. The III series had tensile strengths of 96–116 MPa, an elongation at break of 7–8%, and initial moduli of 2.0–2.5 GPa. The glass‐transition temperatures (Tg) and softening temperatures (Ts's) of the III series were recorded between 232 and 285 °C and 216–279 °C, respectively. The decomposition temperatures for 10% weight loss all occurred above 511 °C in nitrogen and 487 °C in air. The III series showed low dielectric constants (2.71–3.54 at 1 MHz), low moisture absorption (0.18–0.66 wt %), and was light‐colored with a cutoff wavelength below 380 nm and a low yellow index (b*) values of 7.3–14.8. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1270–1284, 2005  相似文献   

5.
A new adamantane‐based bis(ether anhydride), 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]adamantane dianhydride, was prepared in three steps starting from nitrodisplacement of 4‐nitrophthalonitrile with the potassium phenolate of 2,2‐bis(4‐hydroxyphenyl)adamantane. A series of adamantane‐containing poly(ether imide)s were prepared from the adamantane‐based bis(ether anhydride) and aromatic diamines by a conventional two‐stage synthesis in which the poly(ether amic acid)s obtained in the first stage were heated stage‐by‐stage at 150–270°C to give the poly(ether imide)s. The intermediate poly(ether amic acid)s had inherent viscosities between 0.56 and 1.92 dL/g. Except for those from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all the poly(ether amic acid) films could be thermally converted into transparent, flexible, and tough poly(ether imide) films. All the poly(ether imide)s showed limited solubility in organic solvents, although they were amorphous in nature as evidenced by X‐ray diffractograms. Glass transition temperatures of these poly(ether imide)s were recorded in the range of 242–317°C by differential scanning calorimetry and of 270–322°C by dynamic mechanical analysis. They exhibited high resistance to thermal degrdation, with 10% weight loss temperatures being recorded between 514–538°C in nitrogen and 511–527°C in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1619–1628, 1999  相似文献   

6.
4,4′‐(1,4‐Phenylenedioxy)dibenzoic acid as well as the 2‐methyl‐, 2‐tert‐butyl‐, or 2‐phenyl‐substituted derivatives of this dicarboxylic acid were synthesized in two main steps from p‐fluorobenzonitrile and hydroquinone or its methyl‐, tert‐butyl‐, or phenyl‐substituted derivatives. Polyhydrazides and poly(amide–hydrazide)s were prepared from these bis(ether benzoic acid)s or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, or p‐aminobenzoyl hydrazide by means of the phosphorylation reaction or low‐temperature solution polycondensation. Most of the hydrazide polymers and copolymers are amorphous and readily soluble in various polar solvents such as N‐methyl‐2‐pyrrolidone (NMP) and dimethyl sulfoxide. They could be solution‐cast into transparent, flexible, and tough films. These polyhydrazides and poly(amide–hydrazide)s had Tgs in the range of 167–237°C and could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazole)s and poly(amide–1,3,4‐oxadiazole)s approximately in the region of 250–350°C, as evidenced by the DSC thermograms. All the tert‐butyl‐substituted oxadiazole polymers and those derived from isophthalic dihydrazide were organic soluble. The thermally converted oxadiazole polymers exhibited Tgs in the range of 208–243°C and did not show significant weight loss before 450°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1169–1181, 1999  相似文献   

7.
A series of novel aromatic poly(ether imide)s (PEI) containing ortho‐catenated phenylene rings and pendant trifluoromethyl group have been prepared from 1,2‐bis(3,4‐dicarboxyphenoxy)benzene dianhydride (1) with seven trifluoromethyl‐substituted aromatic bis(ether amine)s ( 2a‐g ) via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by chemical imidization to the polyimides. These PEIs had inherent viscosities in the range of 0.45–1.17 dL/g that corresponded to weight–average and number–average molecular weights (by gel‐permeation chromatography) of 42,000–102,000 and 28,500–67,500, respectively. All the PEIs were readily soluble in many organic solvents and could be solution‐cast into transparent, flexible, and strong films. These films were essentially colorless; they had a very low yellowness index of 4.34–6.55 and an UV–vis absorption cut‐off wavelength at 361–370 nm. The PEIs exhibited moderate‐to‐high glass‐transition temperatures (Tg) in the range of 185–270 °C, softening temperatures (Ts) in the range of 184–275 °C, and 10% weight loss temperatures higher than 466 °C in nitrogen or in air. They also showed low moisture absorptions of 0.49–0.70% and low dielectric constants of 2.78–3.26 (measured at 10 kHz). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3092–3102, 2006  相似文献   

8.
A series of thermoplastic poly(butylene-co-hydroquinone bis(2-hydroxyethyl)ether terephthalates) (PBHT), with different molar ratios of hydroquinone bis(2-hydroxyethyl)ether (HQEE)/1,4-butanediol 9/91, 18/82 and 27/73, were synthesized via melt polycondensation. The compositions, thermodynamics and crystallization properties of the obtained copolyesters were characterized in detail by 1H NMR, differential scanning calorimeters (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). These results showed that the PBHTs were successfully synthesized, and the incorporation of the HQEE group significantly improved thermal properties of the polymers. However, HQEE did not change the crystal structure of PBT. The Tm values of the copolymers decreased (from 208?°C to 174?°C) with increasing content of HQEE segments, on the contrary, Tg values increased (from 37?°C to 43?°C). The temperatures for 5% weight loss did not decrease and appeared at a range of 373–377?°C.  相似文献   

9.
A novel bis(ether anhydride) monomer, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride (4), was synthesized from the nitrodisplacement of 4‐nitrophthalonitrile by the bisphenoxide ion of 9,9‐bis(4‐hydroxyphenyl)fluorene (1), followed by alkaline hydrolysis of the intermediate tetranitrile and dehydration of the resulting tetracarboxylic acid. A series of poly(ether imide)s bearing the fluorenylidene group were prepared from the bis(ether anhydride) 4 with various aromatic diamines 5a–i via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s 6a–i followed by thermal cyclodehydration to the polyimides 7a–i. The intermediate poly(amic acid)s had inherent viscosities in the range of 0.39–1.57 dL/g and afforded flexible and tough films by solution‐casting. Except for those derived from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all other poly(amic acid) films could be thermally transformed into flexible and tough polyimide films. The glass transition temperatures (Tg) of these poly(ether imide)s were recorded between 238–306°C with the help of differential scanning calorimetry (DSC), and the softening temperatures (Ts) determined by thermomechanical analysis (TMA) stayed in the range of 231–301°C. Decomposition temperatures for 10% weight loss all occurred above 540°C in an air or a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1403–1412, 1999  相似文献   

10.
A fluorinated diamine monomer containing flexible ether linkage and bulky trifluoromethyl substituents, namely, bis(4‐amino‐2‐trifluoromethylphenyl) ether (a), is employed to react with nonfluorinated 1,4‐bis(3,4‐dicarboxyphenoxy) benzene dianhydride (3) and CF3‐free 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl] propane dianhydride (4), respectively, to prepare 2 novel soluble and optically transparent semi‐fluorinated poly (ether imide)s (PEIs; 3a and 4a). Compared with the corresponding PEIs based on nonfluorinated 4,4′‐diaminodiphenyl ether (b) and CF3‐free pyromellitic dianhydride (5), the novel semifluorinated PEIs 3a and 4a not only display better solubility in some organic solvents and higher optical transparency with cutoff absorption wavelength (λ0) below 370 nm but also maintain outstanding mechanical properties and thermal stability. 3a and 4a have tensile strength beyond 80 MPa and possess glass‐transition temperatures (Tg) beyond 210°C, coupled with the temperatures of 5% weight loss (T5%) exceeding 500°C. It is also found that 3a and 4a exhibit contact angles against water beyond 110° and water absorptions below 0.8% together with dielectric constants less than 3.2.  相似文献   

11.
A naphthalene unit-containing bis(ether anhydride), 2,7-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 2,7-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were synthesized using a conventional two-stage polymerization process from the bis(ether anhydride) and ten aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.95–2.67 dL/g. The films of poly(ether imide)s derived from two rigid diamines, that is, p-phenylenediamine and benzidine, crystallized and embrittled during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These poly(ether imide) films had yield strengths of 91–115 MPa, tensile strengths of 89–136 MPa, elongation to break of 11–45%, and initial moduli of 1.7–2.2 GPa. The Tgs of poly(ether imide)s were recorded in the range of 222–256°C depending on the nature of the diamine moiety. All polymers were thermally stable up to 500°C, with 10% weight loss being recorded above 540°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2281–2287, 1997  相似文献   

12.
A novel series of colorless and highly organosoluble poly(ether imide)s were prepared from 3,3‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]phthalide dianhydride with various fluorinated aromatic bis(ether amine)s via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by cyclodehydration to produce the polymer films. The poly(ether imide)s showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents, in ether‐type solvents, and even in chlorinated solvents. Their films had a cutoff wavelength between 358 and 373 nm, and the yellowness index ranged from 3.1 to 9.5. The glass‐transition temperatures of the poly(ether imide) series were recorded between 237 and 297 °C, the decomposition temperatures at 10% weight loss were all above 494 °C, and the residue was more than 54% at 800 °C in nitrogen. These films showed high tensile strength and also were characterized by higher solubility, lighter color, and lower dielectric constants and moisture absorption than an analogous nonfluorinated polyimide series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3140–3152, 2006  相似文献   

13.
A new naphthalene unit-containing bis(ether anhydride), 2,6-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was synthesized in three steps starting from the nucleophilic nitrodisplacement reaction of 2,6-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were prepared using a conventional two-step polymerization process from the bis(ether anhydride) and various aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.65–2.03 dL/g. The films of poly(ether imide)s derived from two rigid diamines, i.e. p-phenylenediamine and benzidine, crystallized during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These aromatic poly(ether imide) films had yield strengths of 104–131 MPa, tensile strengths of 102–153 MPa, elongation to break of 8–87%, and initial moduli of 1.6–3.2 GPa. The glass transition temperatures (Tg's) of poly(ether imide)s were recorded in the range of 220–277°C depending on the nature of the diamine moiety. All polymers were stable up to 500°C, with 10% weight loss being recorded above 550°C in both air and nitrogen atmospheres. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1657–1665, 1998  相似文献   

14.
The synthesis and characterization of a series of novel poly(aryl amide imide)s based on diphenyltrimellitic anhydride are described. The poly(aryl amide imide)s, having inherent viscosities of 0.39–1.43 dL/g in N-methyl-2-pyrrolidinone at 30°C, were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization. All the polymers were amorphous, readily soluble in aprotic polar solvents such as DMAC, NMP, dimethylsulfoxide, N,N-dimethylformamide, and m-cresol, and could be cast to form flexible and tough films. The glass transition temperatures were in the range of 284–366°C, and the temperatures for 5% weight loss in nitrogen were above 468°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4541–4545, 1999  相似文献   

15.
The synthesis and characterization of hyperbranched aromatic poly(ether imide)s are described. An AB2 monomer, which contained a pair of phenolic groups and an aryl fluoro moiety activated toward displacement by the attached imide heterocyclic ring, was prepared. The nucleophilic substitution of the fluoride with the phenolate groups led to the formation of an ether linkage and, subsequently, to the hyperbranched poly(ether imide), which contained terminal phenolic groups. A similar one‐step polymerization involving a monomer that contained silyl‐protected phenols yielded a hyperbranched poly(ether imide) with terminal silylated phenols. The degree of branching of these hyperbranched polymers was approximately 55%, as determined by a combination of model compound studies and 1H NMR integration experiments. End‐capping reactions of the terminal phenolic groups were readily accomplished with a variety of acid chlorides and acid anhydrides. The nature of the chain‐end groups significantly influenced physical properties, such as the glass‐transition temperature and the solubility of the hyperbranched poly(ether imide)s. As the length of the acyl chain of the terminal ester groups increased, the glass‐transition temperature value for the polymer decreased, and the solubility of the polymer in polar solvents was reduced, becoming more soluble in nonpolar solvents. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2536–2546, 2001  相似文献   

16.
The ability to achieve high molecular weight poly(ether ketone)s from the polycondensation of bis(aryl chloride)s with bis(phenolate)s has been consistently demonstrated. The polymerizations presented here help to delineate for specific bis(aryl chloride)/bisphenolate pairs the reaction conditions required to obtain high molecular weight polymers. Polycondensation of 1,3-bis(4-chlorobenzoyl)-5-tert-butylbenzene ( 6 ) and 2,2′-bis(4-chlorobenzoyl)-biphenyl ( 15 ) with various bisphenolates as well as of 2,2′-bis(4-hydroxyphenoxy)biphenyl ( 33 ) with 4,4′-dichlorobenzophenone ( 41 ) and 1,3-bis(4-chlorobenzoyl)benzene ( 43 ) were used as representative model systems to select reaction conditions that led to high molecular weight polymers. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
A new bis(ether anhydride), 3,3′,5,5′‐tetramethyl‐2,2‐bis[4‐(4‐dicarboxyphenoxy)phenyl]propane dianhydride ( 3 ), was prepared in three steps: the nitro displacement of 4‐nitrophthalonitrile with 2,2‐bis(4‐hydroxy‐3,5‐dimethylphenyl)propane, the alkaline hydrolysis of the intermediate bis(ether dinitrile), and the subsequent dehydration of the resulting bis(ether diacid). A series of new highly soluble poly(ether imide)s with tetramethyl and isopropylidene groups were prepared from the bis(ether anhydride) 3 with various diamines by a conventional two‐stage synthesis including polyaddition and chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.54–0.73 dL g?1. Gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 54,000 and 124,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. Most of the polymers could be dissolved with chloroform concentrations as high as 30 wt %. These polymers had glass‐transition temperatures of 244–282 °C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight losses recorded above 463 °C in nitrogen. These transparent, tough, and flexible polymer films were obtained through solution casting from N,N‐dimethylacetamide solutions. These polymer films had tensile strengths of 81–102 MPa and tensile moduli of 1.8–2.0 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2556–2563, 2002  相似文献   

18.
A series of isomeric poly(thioether ether imide)s (PTEIs) containing both thioether and ether linkages were prepared by nucleophilic substitution reaction of isomeric bis(chlorophthalimide)s with 4,4′‐thiobisbenzenethiol. The inherent viscosities of these polymers were in the range of 0.40–0.56 dL/g in m‐cresol at 30°C. The Tg values of PTEIs were 196–236°C; T5% values reached up to 509–529°C in nitrogen and 508–534°C in air, which indicated this kind of polyimide possessed excellent thermal stability. The hydrolytic stability was arranged in the order: a > b > c > d > e, and improved with increasing the content of 3‐substituted phthalimide unit in the polymer backbone. Flexible films could be cast from the polymer solution with a solid content of 10%. The PTEI films exhibited good mechanical properties with tensile strengths of 90–104 MPa, elongations at break of 6.6–7.9%, and tensile moduli of 2.3–2.6 GPa. The minimum complex viscosity of PTEIs c was about 100 Pa·s at 310°C and the minimum melt viscosity of PTEIs (a–e) decreased with increasing the content of unsymmetrical 3,4′‐substituted phthalimide units. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

20.
Aromatic polyimides are distinguished for their excellent mechanical and thermal properties in many engineering fields1. However, aromatic polyimides are normally insoluble in common organic solvents, which restricts their applications in some fields. Many efforts have been taken to improve their solubility. Introducing bulky side groups and non-coplanar structure into polymers bone chains is a good way to obtain the polymers with excellent mechanical and thermal properties2. In this paper…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号