首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the reaction conditions and nature of the initiator were investigated in the Cp2Ti(III)Cl‐catalyzed living radical polymerization of styrene initiated by benzoyl peroxide (BPO), tert‐butyl peroxide (TBPO), tert‐butyl peroxybenzoate (TBPOB), dicumyl peroxide (CPO), and tert‐butylperoxy 2‐ethylhexyl carbonate (TBPOEHC). The reversible termination of the growing chains with Cp2Ti(III)Cl affords a linear dependence of molecular weight on conversion over a wide range of temperatures (60–120 °C) with an optimum in polydispersity (Mw/Mn < 1.2) for St/BPO/Cp2TiCl2/Zn = 100/1/3/6 at 60–90 °C. The similarity of the kinetic parameters from polymerizations initiated by peroxides with vastly different half‐life times (t = 1 h, t = 543 h) and the minimum peroxide/Ti = 1/2 ratio required for a living process indicate that initiation occurs primarily by the redox reaction of the peroxide with Cp2Ti(III)Cl rather than peroxide thermal decomposition. This is consistent with one Ti equivalent consumed in the redox initiation and the second one utilized in the reversible termination of the growing chains. Qualitatively, based on the livingness of the process, these initiators ranked as BPO > TBPOB ~ TBPO > CPO > TBPOEHC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1106–1116, 2006  相似文献   

2.
A new series of 1,1,3,3‐tetraethylisoindoline‐2‐oxyl (TEISO)‐based alkoxyamines was prepared. The half‐lives for thermal dissociation indicated that the most sterically congested cumyl‐TEISO alkoxymine had the greatest potential as an initiator for the polymerization of monomers at lower temperatures. The polymerization of styrene at 110 °C gave a linear evolution of Mn with conversion in the early stages. Further evidence for the “living” nature was given by the polydispersities of the polymers that remained low (Mw/Mn = 1.13–1.27) throughout the polymerization (up to 80% conversion). No polymer was formed for the styrene system in a reasonable time below 100 °C. High‐performance liquid chromatographic/mass spectrometric investigations of the distribution of trapped oligomers containing one to nine monomer units formed at 60 °C revealed that the trapping of oligomeric cumyl–styryl radicals by TEISO is irreversible at this temperature. Methyl methacrylate polymerized with cumyl‐TEISO at 60–70 °C, although the initial high rates of polymerization soon decreased to zero at low conversions (10–15%), and the high polydispersities (Mw/Mn = 1.42–1.73) indicated significant side reactions. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1232–1241, 2001  相似文献   

3.
微乳液中苯乙烯聚合反应的研究   总被引:2,自引:0,他引:2  
测定了十二烷基磺酸钠(As)/正丁醇/20%苯乙烯/水体系相平衡。用油溶性偶氮二异丁腈(AIBN)和水溶性过二硫酸钾(K~2S~2O~8)为引发剂,研究了油包水(W/O)、双连续(BC)和水包油(O/W)型微乳液介质中苯乙烯的聚合反应。得到了苯乙烯转化率和聚苯乙烯分子量与体系水含量之间的关系,讨论了微乳液结构对聚合作用的影响。并通过电镜观察了聚苯乙烯的形貌,求得了聚苯乙烯的粒径,同时用^1HNMR研究了苯乙烯在微乳液液滴中的增溶位置,分析了聚合作用的实验结果。  相似文献   

4.
The anionic polymerization of methacrylate monomers has been investigated with lithium dialkylamides as initiators in THF and toluene, respectively. Theoretical arguments and previous studies of mixed aggregates of lithiated organic compounds support the complexity of these systems. Lithium diisopropylamide (LDA) shows the highest initiation efficiency (e.g., f = 75% in THF at −78°C). Interestingly enough, lithium chloride has a remarkable beneficial effect on the methacrylates polymerization in THF at −78°C, due to the formation of 1 : 1 mixed dimer with LDA, which promotes a well-controlled anionic polymerization (Mw/Mn = 1.05) with a high initiation efficiency (94%). The less bulky lithium–diethylamide (LDEA) is much less efficient (f = 26%), essentially as a result of some associated “dormant” species and side reactions on the carbonyl group of MMA. Although various types of ligands have been screened, no remarkable improvement of LDEA efficiency has been observed. Lithium bis(trimethylsilyl)amide (LTMSA) has also been used to increase the steric hindrance of the initiator. This compound is, however, unable to initiate the methacrylates polymerization, more likely because of a too low basicity and a too strong Li—N bond. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3637–3644, 1997  相似文献   

5.
Monocyclopendienyltitanium trichloride (CpTiCl3) was supported on polymer carriers with different hydroxyl contents, and the supported catalysts were used for styrene polymerization. The supported catalysts exhibited high activity even at low Al/Ti ratios and increased the molecular weight of the products, indicating that polymer carriers could stabilize the active sites. The polymers prepared with unsupported and supported catalysts were extracted with boiling n‐butanone and characterized by carbon nuclear magnetic resonance (13C NMR) and differential scanning calorimetry. The polymers obtained by supported catalysts had a high fraction of boiling n‐butanone‐insoluble part and high melting temperatures, but 13C NMR results showed that syndiotacticity decreased compared with that of polymers prepared with an unsupported catalyst. ESR study on the supported catalysts confirmed that the active sites supported on the carrier dropped into the solution and formed active sites the same as those in the unsupported system when they reacted with methylaluminoxane. 13C NMR analysis showed that the polymerization mechanism of the supported active sites was an active‐site controlled mechanism instead of a chain‐end controlled mechanism of the unsupported active sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 127–135, 2000  相似文献   

6.
In this paper, the polymerization of styrene initiated by potassium (K)-tetrahydrofuran (THF)-graphite intercalation compound (GIC) (K-THF-GIC) was studied. The mechanism of the polymerization was determined to be anionic polymerization according to its characteristics. The effect of the concentration of the initiator and monomer was studied. It was found that the polymerization mainly occurred on the surface and edge of the intercalated graphite. It was also shown that the polarity of solvent has little effect on the polymerization yield in this system.  相似文献   

7.
A series of polychloroalkanes, known as telogen agents for redox telomerization, were used as initiators for atom transfer radical polymerization (ATRP) of styrene using the heterogeneous CuCl/2,2′-bipyridine catalyst. In copper-catalyzed redox telomerization, the reactivity of RCCl3-type telogens is strongly influenced by the nature of the R group. In ATRP, the 2,2′-bipyridine ligand levels the activity of the catalytic system in such a way that all 1,1,1-trichloroalkanes are efficient initiators in ATRP, whatever the R group. The nature of this substituent influences the overall rate of polymerization through both the number of active sites per chain and the [Cu (I)]/[Cu (II)] ratio. By the combining of several analytical techniques, it is proved that some polychloroalkanes such as CCl3CO2CH3, CCl3CF3, or CCl4 are bifunctional initiators. Finally, a general mechanism of initiation is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2933–2947, 1998  相似文献   

8.
Stereoselective polymerization of rac‐lactide is one of the most important issues as the properties of polylactide (PLA) depend strongly on its tacticity. There is, however, a paucity of catalysts that allow for easy switching between heteroselectivity and isoselectivity, which limits the synthesis of stereo copolymers of PLA and modification of polylactide properties. Dialkylgallium alkoxides activated by organosuperbases have been used as catalysts in the ring‐opening polymerization of racemic lactide (rac‐LA). The reaction of (S,S)‐[Me2Ga(μ‐OCH(Me)CO2Me)]2 ( 1 ) with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) or 7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (MTBD) resulted in the formation of isoselective gallium species, highly active in the polymerization of rac‐LA. DOSY (diffusion‐ordered spectroscopy) NMR was indicative for the presence of dimeric gallium species. However, the structure of model monomeric gallium alkoxide Me2Ga(ON) (where ON is monoanionic bidentate ligand possessing organosuperbase functionality) shows that the presence of an organosuperbase may substantially weaken Ga?Oalkoxide?Ga bridges. The facile switch of stereoselectivity upon addition of organosuperbase to nonselective/heteroselective 1 allowed for the first time the synthesis of diblock polylactide comprised of isotactically and heterotactically enriched blocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
N‐Bromosuccinimide (NBS) was used as the initiator in the atom transfer radical polymerizations of styrene (St) and methyl methacrylate (MMA). The NBS/CuBr/bipyridine (bpy) system shows good controllability for both polymerizations and yields polymers with polydispersity indexes ranging from 1.18 to 1.25 for St and 1.14 to 1.41 for MMA, depending on the conditions used. The end‐group analysis of poly(MMA) and polystyrene indicated the polymerization is initiated by the succinimidyl radicals formed from the redox reaction of NBS with CuBr/bpy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5811–5816, 2004  相似文献   

10.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

11.
The cobaloxime‐mediated catalytic‐chain‐transfer polymerization of styrene at 60 °C was studied with an emphasis on the effects of monomer purification and polymerization conditions. Commonly used purification methods, such as column chromatography and simple vacuum distillation, were not adequate for obtaining kinetic data to be used in mechanistic modeling. A purification regime involving inhibitor removal with basic alumina, followed by polymerization of the styrene in the presence of the cobaloxime and subsequent vacuum distillation, was found to be essential to this end. It was then possible to quantitatively investigate effects such as the initiator concentration and conversion dependencies of the apparent chain‐transfer constant that resulted from the occurrence of cobalt–carbon bond formation. A value of about 9 × 103 was found for the true chain‐transfer constant to cobaloxime boron fluoride, that is, its value in the absence of cobalt–carbon bond formation. Furthermore, previous predictions were confirmed: the measured chain‐transfer constant decreased with increasing initiator concentration and conversion. Finally, it was confirmed that the presence of light increased the amount of free Co(II) catalyst in agreement with other studies. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 752–765, 2003  相似文献   

12.
Acrylonitrile‐Styrene (A/S) copolymers were prepared by photopolymerization using uranyl nitrate ion as initiator. The copolymer compositions were determined by elemental analysis, and comonomer reactivity ratios were determined by nonlinear least squares error in variables method (EVM). The complete spectral assignment of the 13C and 1H‐NMR spectra were done with the help of Distortionless Enhancement by Polarization Transfer (DEPT) and by the two dimensional 13C‐1H Heteronuclear Single Quantum Correlation (HSQC) and TOCSY experiments. The methylene and methine carbon resonance show both stereochemical and compositional sensitivity. The 2‐D Total Correlated Spectroscopy (TOCSY) experiment was used to ascertain the various geminal coupling between the methylene protons. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 721–727, 1999  相似文献   

13.
1,1‐Diphenylethylenene (DPE) was copolymerized anionically with styrene to yield well‐defined alternating copolymers, which were terminated by reacting the “living” polymeric carbanion species with 4′‐chloro‐2,2′:6′2″‐terpyridine. DPE containing polymers show improved long‐term service temperatures due to the stiffening of the polymer main chain by the bulky phenyl‐rings. In addition, the functionality provided by the terpyridine group allows the synthesis of attractive materials for various fields of application. The obtained polymers were fully characterized by means of nuclear magnetic resonance, gel permeations chromatography, elemental analysis, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, ultraviolet‐visible spectroscopy, and macromolecular hydrodynamic methods (analytical ultracentrifugation, gel permeation chromatography, intrinsic viscosimetry). In the molar mass range of 2 < M < 25 kg/mol, the scaling relationships between M and hydrodynamic characteristics are obtained. The values of the Kuhn segment length (or persistence length) and hydrodynamic diameters are evaluated and compared with those of linear polystyrene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3691–3701, 2009  相似文献   

14.
To explain the kinetic features of particle formation and growth in unseeded emulsion polymerization initiated by oil-soluble initiators, a mathematical kinetic model is proposed, based on the assumption that when initiator radicals or monomer radicals in the water phase enter monomer-solubilized emulsifier micelles, initiate polymerization, and propagate to a chain length which is long enough not to desorb from the micelles, the micelles are regarded to be transformed into polymer particles. It is demonstrated by comparing the experimental results obtained in the emulsion polymerization of styrene initiated by the oil-soluble initiator, 2,2'-azobisisobutyronitrile, with sodium lauryl sulfate as emulsifier that the proposed kinetic model satisfactorily explains the kinetic features such as the effects of initial emulsifier, initiator, and monomer concentrations on both the number of polymer particles produced and the monomer conversion versus time histories. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The kinetics of styrene microemulsion polymerization stabilized by sodium dodecyl sulfate (SDS) and a series of short‐chain alcohols (n‐CiH2i+1OH, abbreviated as CiOH, where i = 4, 5, or 6) at 60 °C was investigated. Sodium persulfate was used as the initiator. The microemulsion polymerization process can be divided into two intervals: the polymerization rate (Rp) first increases to a maximum at about a 20% conversion (interval I) and thereafter continues to decrease toward the end of the polymerization (interval II). For all the SDS/CiOH‐stabilized polymerization systems, Rp increases when the initiator or monomer concentration increases. The average number of free radicals per particle is smaller than 0.5. The molecular weight of the polymer produced is primarily controlled by the chain‐transfer reaction. In general, the reaction kinetics for the polymerization system with C4OH as the cosurfactant behaves quite differently from the kinetics of the C5OH and C6OH counterparts. This is closely related to the different water solubilities of these short‐chain alcohols and the different concentrations of the cosurfactants used in the preparation of the microemulsion. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 898–912, 2001  相似文献   

16.
Emulsion and microemulsion polymerization of styrene were initiated with a gamma ray to study the effect of dose rate on polymerization. In both systems, there is an apparent plateau of polymerization rate in the curve of reaction rate vs. conversion. It was shown that emulsion polymerization conformed to the Smith–Ewart theory very well. Changing the dose rate in interval 2 had no great influence on polymerization rate, but it changed the average lifetime of radicals in polymer particles and affected the molecular weight of polymer produced. For microemulsion polymerization it was assumed that in the plateau it is the number of growing polymer particles being kept constant, not the number of polymer particles. When the dose rate was changed while the polymerization came into the constant period, the polymerization rate and the molecular weight of the polymer varied with the dose rate. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 257–262, 1998  相似文献   

17.
CH2?CHCH2CpTiCl3 (1), CH2?CHCH2CH2CpTiCl3 (2) and CH3CH2CH3CpTiCl3 (3) have been synthesized and characterized. The influence of the alkenyl substituent groups on the catalyst activities in the syndiotactic polymerization of styrene was investigated. The catalyst activities decreased in the order CH2?CHCH2CH2CpTiCl3 > CH3CH2CH2CH2CpTiCl3 > CH3CH2CH2CpTiCl3 > CH2?CHCH2CpTiCl3 (Cp?C5H4). By using complex 1, the dependence of the activity on the concentration of methylaluminoxane, triisobutylaluminum and diisobutylaluminum hydride was investigated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The effect of common anion producing salt, tetrabutylammonium chloride (n-Bu4NCl), on the livingness and kinetics of styrene (St), p-chlorostyrene (pClSt), and p-methylstyrene (pMeSt) polymerization initiated by the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4 system has been investigated. Uncontrolled (conventional) carbocationic polymerization of St and p MeSt can be converted to living polymerization by the use of n-Bu4NCl. Under similar conditions the polymerization of p ClSt is living even in the absence of n-Bu4NCl, although the molecular weight distribution (MWD) of the polymer becomes narrower in the presence of this salt. The apparent rates of polymerizations decrease in the presence of n-Bu4NCl in proportion with the concentration of the salt. The rate of living polymerization of p ClSt is noticeably lower than that of St, while that of p MeSt is higher. The apparent rate constants, kpA, of these polymerizations have been determined, and the effects of the electron donating p Me- and electron withdrawing p Cl-substituents relative to the rate of St polymerization have been analyzed. [For part LXI, see J. Si and J. P. Kennedy, Polym. Bull., 33 , 651 (1994)]. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3341–3347, 1997  相似文献   

19.
The synthesis of a diblock copolymer of styrene and vinyl acetate (VAC), PS‐b‐PVAC, was performed by successive photoinduced charge‐transfer polymerization (CTP) under UV irradiation. A novel amphiphilic diblock copolymer of PS‐b‐PVA then was obtained by the hydrolysis of the diblock copolymer PS‐b‐PVAC with sodium ethoxide as a catalyst. Both of them were characterized by Fourier transform infrared, H NMR, and gel permeation chromatography in detail. The effect of the solvents on the CTP and the kinetics of the CTP are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 914–920, 2000  相似文献   

20.
The bulk polymerization of styrene initiated by ?‐caprolactam (CL) and n‐dodecyl mercaptan (RSH) has been explored. This novel polymerization system shows living characteristics. For example, the molecular weight of the resulting polymers increases with conversion, and the system has the ability to form diblock copolymers and so forth. The polymer chain end contains thiol and lactam structures, which we have investigated with Fourier transform infrared, 1H NMR, and 13C NMR techniques. Electron spin resonance spectra and theoretical calculations by the Hartree–Fock methods have been used to examine the mechanism. The results reveal that the initial polymerization starts from thiol via a chain‐transfer reaction, and the propagation proceeds by the insertion of a monomer between the terminal group and the intermediate structure of lactam. Finally, the polymerization kinetics have been examined. The polymerization rate varies linearly with the concentration of CL and RSH, and this confirms the mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4976–4993, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号