首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
烯烃的不对称环氧化物通过选择性开环或者官能团的转化,可以生成一系列有价值的手性化合物,被广泛用作医药、农药、香料等精细化学品的合成中间体.手性Mn(salen)金属配合物被证明是烯烃不对称环氧化最有效的催化剂之一.本文综述了近年来均相手性Mn(salen)催化剂、有机聚合物固载的手性Mn(salen)、无机载体固载手性...  相似文献   

2.
A series of aminopropyl group-modified ordered mesoporous silica materials impregnated with Mn(salen) were prepared using successive grafting procedures. The prepared composite catalysts were well characterized by inductively coupled plasma atomic emission spectroscopy, Fourier transform-infrared, UV–Vis diffuse reflectance spectroscopy, X-ray diffraction analysis, and transmission electron microscopy in order to confirm the structure integrities of the Mn(salen) units after the incorporation, to evidence the formation of a covalent bond between the starting Mn(salen) units and the aminopropyl group-modified SBA-15 matrix in the presence of NaOH by abstraction of an HCl molecule. These heterogeneous catalysts exhibited comparable catalytic activity and selectivity to those of the homogeneous counterpart in the epoxidation of styrene by using NaClO as oxidant. In addition, the effects of key reaction parameters, including the loadings of the neat Mn(salen), molar ratios of NaClO to styrene, and PPNO amount on the reactivity and selectivity, were also studied. Finally, the reusability of the prepared heterogeneous catalyst was evaluated.  相似文献   

3.
This communication describes the design and application of a novel catalytic epoxidation system derived from the initial immobilization of a homogeneous sulfonato (salen)Mn(III) complex on two solid carriers (silica gel and siliceous earth) and subsequent dispersion of the supported manganese complexes into ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMImPF6) and 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMImBF4) for recycling. The performance of chiral (salen)Mn(III) system in enantioselective epoxidation of olefins was investigated systematically. Even higher enantioselectivity than that of the homogeneous counterpart was obtained with similar catalytic activity. In particular, the best catalytic result is that the combination of the silica gel‐supported (salen)Mn(III) catalyst and BMImPF6 affords 97–100% ee for epoxidation of α‐methylstyrene, and high ee values were retained even after three cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Huidong Zhang 《Tetrahedron》2006,62(28):6640-6649
This article reports our recent work on the heterogeneous asymmetric epoxidation catalyzed by chiral Mn(salen) catalyst axially immobilized via phenoxyl groups and organic sulfonic groups. The asymmetric epoxidation of 6-cyano-2,2-dimethylchromene was especially presented in detail. The factors that affected the asymmetric induction, such as the nanopores and the external surface, the linkage length, and the modification of nanopores with methyl groups were discussed. It was found that the enantioselectivities increased with decreasing the nanopore sizes or increasing the linkage length in nanopore, and the Mn(salen) catalyst immobilized into nanopores generally gave higher ee values than those on the external surface. The heterogeneous Mn(salen) catalysts with modified nanopores gave a TOF of 14.8 h−1 and an ee value of 90.6% for the asymmetric epoxidation of 6-cyano-2,2-dimethylchromene, which were higher than the results (TOF 10.8 h−1, ee 80.1%) obtained for the homogeneous catalyst.  相似文献   

5.
以低聚苯乙烯基膦酸-磷酸氢锆(ZSPP)作为载体, 对该载体进行氯甲基化、磺酸化修饰后与手性Salen Mn(Ⅲ)轴向配位, 合成了一种新固载型手性Salen Mn(Ⅲ)催化剂; 采用FTIR,DR UV-Vis, AAS, SEM, TEM, TG和N2吸附等手段对催化剂进行了表征. 以苯乙烯不对称环氧化为探针反应, 初步考察了催化剂在不同氧源、 反应温度、 反应时间和催化剂用量等因素下的催化性能. 结果表明, 该催化剂具有良好的催化活性, 转化率最高达到85%, 选择性为90%, e.e.值为64%. 固载手性Salen Mn(Ⅲ)催化剂性质稳定, 能循环使用6次.  相似文献   

6.
Highly enantioselelctive and repeatable epoxidation of styrene was performed by using new chiral (salen)Mn(III) catalysts, which were derived from the initial immobilization of a homogeneous (salen)Mn(III) complex on solid carriers and subsequent dispersion into ionic liquids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Chiral dimeric Mn(III) salen complex with 1R, 2R-(?)-diaminocyclohexane collar was immobilized on short channel large pore sized silica through a long linker of {(CH2)3–NH–melamine–piperazine} to investigate its performance in enantioselective epoxidation of chromenes, indene, styrene and cis β-methyl styrene in the presence of pyridine N-oxide (PyNO) as an axial base using aqueous NaOCl as an oxidant at 0 °C. The immobilized catalyst system showed high turnover frequency (TOF) and enantioselectivity for the smaller and bulkier alkenes like styrene, indene, 2,2-dimethylchromene and 6-cyano-2,2-dimethylchromene (ee up to 98%). These results are the best reported for heterogeneous catalyst under biphasic reaction conditions and were comparable to the dimeric Mn(III) salen system under homogeneous condition. The performance of the immobilized catalyst was retained for six reuse experiments. This protocol was extended to the synthesis of an antihypertensive drug (S)-Levchromakalim (ee 98%) at 1 g level.  相似文献   

8.
A linear polystyrene‐isopropenyl phosphonic acid (PS‐IPPA) copolymer was newly synthesized by free radical reaction in solution with isopropenyl phosphonic acid (IPPA) and styrene. Zirconium poly(styrene‐isopropenyl phosphonate)‐phosphate acid (ZPS‐IPPA) was also synthesized. The benzene rings of ZPS‐IPPA were hydroxylated and then further reacted with Mn(salen)Cl. Thus the heterogeneous catalyst, Mn(salen) axially immobilized onto ZPS‐IPPA was synthesized. These substances were characterized by IR spectra, X‐ray diffraction (XRD), SEM, TEM, NMR, thermogravimetric analysis, and AAS. The catalyst showed good activity to epoxidation of styrene, which is close to that of the corresponding homogeneous catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Kai Yu 《Tetrahedron》2009,65(1):305-55
Two chiral Mn(III) salen complexes were immobilized onto a series of mesoporous MCM-41 and MCM-48 materials with different pore sizes and the as-synthesized catalysts were active and enantioselective for the asymmetric epoxidation of styrene and indene. The results of XRD, FTIR, DR UV-vis, and N2 sorption showed that the chiral Mn(III) salen complexes were anchored in the channels of mesoporous materials. The influence of organic silicane dosage on the catalytic performance was studied and the optimum dosage of organic silicane for preparing heterogeneous catalysts was determined. Furthermore, the effect of the fine-tuning of pore size on the performance of heterogeneous catalysts was discussed. In general, larger pore size of the supports could lead to higher conversions and the compatible pore size with substrate may be responsible for the improved enantiomeric excess (ee) values.  相似文献   

10.
王朝阳  宋光伟  朱锦桃 《有机化学》2009,29(7):1142-1146
报道了以邻苯二甲酰亚胺作亲核试剂, 在手性催化剂salen(Co)(OAc)作用下动力学拆分外消旋末端环氧化物, 得到较高光学活性的末端环氧化物, 同时也得到了中等光学活性的N-保护的1,2-胺醇化合物. 该拆分反应所用催化剂易得, 且原料价廉, 反应无需惰性气体保护.  相似文献   

11.
Monodisperse crosslinked poly(hydroxyethyl methacrylate) particles (pHEMA) were synthesized for immobilization of the chiral Mn(III)salen homogeneous catalyst by axial coordination. The pHEMA‐Mn(III)salen catalyst was subsequently characterized by FT‐IR, UV and scanning electron microscopy. The results showed that, the heterogeneous Mn(III)salen catalysts also exhibited high activity and enantioselectivity compared to the homogeneous catalyst for the disubstituted cyclic indene and 6‐cyano‐2,2‐dimethylchromene. Moreover, the catalysts were easily separated from the reaction systems and could be renewed several times without significant loss of catalytic activity. Meanwhile, the enantiomeric excess (ee) value remained at 80% in the eighth cycle. The pHEMA support, immobilized by Mn(III)salen, probably acted as a mediator of the reaction between the substrate and the oxidant, and enhanced the stability of the Mn(III)salen compound. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A series of MCM-41 supported chiral Mn(salen) ligands were prepared by ion exchange method and the efficiency of the chiral catalyst was examined in the asymmetric epoxidation of styrene.  相似文献   

13.
在温和条件合成了新型晶态层状有机聚合物-无机杂化载体材料聚(苯乙烯-苯乙烯基膦酸)-磷酸锌, 结合实验数据提出了其可能的理想结构模型. 对该载体进行氯甲基化和酚羟基化修饰后, 轴向配位固载手性Salen Mn(Ⅲ), 合成了一类新型的多相催化剂. 以间氯过氧苯甲酸为氧源, 考察了其对α-甲基苯乙烯及茚不对称环氧化反应的催化性能. 结果表明, 这类固载催化剂具有与均相Jacobsen催化剂相当或更高的催化活性和对映选择性, 并具有优良的重复使用性. 特别是在该氧化体系中, 当无助催化剂N-甲基吗啉氮氧化物(NMO)参与时, 固载催化剂获得更高的转化率及e.e.值, 这为其扩大化生产增加了可能性.  相似文献   

14.
Chiral Jacobsen's catalyst anchored on zinc poly(styrene‐phenylvinylphosphonate)‐phosphate (ZnPS‐PVPA) functionalized by diamines shows superior catalytic activities (conversion up to 99%; enantiomeric excess up to 99%) in the enantioselective epoxidations of unfunctional olefins with m ‐chloroperoxybenzoic acid and NaIO4 as oxidants. The whole chiral salen Mn(III) catalyst, including the ZnPS‐PVPA support and the linker as well as chiral salen Mn ligand together contribute to the chirality of products. The heterogeneous catalyst has the potential for use in industry owing to superior stability (recycling nine times) and activity in large‐scale reactions (such as 200 times).  相似文献   

15.
We have successfully prepared an unsymmetrical analogue of a Katsuki-type salen ligand having a single hydroxyalkyl group at its 6-position, and also its Mn(III) complex; attachment of the complex to a polymer gives a highly enantioselective and recoverable catalyst for epoxidation of 1,2-dihydronaphthalene.  相似文献   

16.
The Jacobsen catalyst was immobilized onto four activated carbons with different average pore sizes, achieved by a gasification process followed by molecular oxygen oxidation. The influence of the textural properties of the activated carbon in the immobilization process and in the catalytic performance of the Mn(III) heterogeneous catalysts was investigated in detail. Three different catalytic systems were studied: styrene epoxidation using m-chloroperoxybenzoic acid; 6-CN-2,2-diMeChromene epoxidation using NaOCl and iodosylbenzene (PhIO) as oxidants. The catalysts tested were active and enantioselective in the three systems studied. Selectivity towards the desired epoxide only decreases in the case of the material with smaller pores, remaining identical to that of the homogeneous phase in all the other materials. The enantiomeric excess values (%ee) for alkene epoxidation increase with the pore size of the heterogeneous catalysts, and these values are even higher than the homogeneous counterparts in the styrene epoxidation reaction. Total Mn(III) loadings increase with the pore size, as well as their distribution within the carbon porous matrix. Characterization of the activated carbons bearing the immobilized manganese(III) complexes by TPD and XPS point to reaction between carbon surface phenolate groups and the manganese(III) complexes through axial coordination of the metal centers to these groups.  相似文献   

17.
In the present study, CoFe2O4@SiO2@CPTMS nanocomposite was synthesized and the homogeneous chiral Mn‐salen complex was anchored covalently onto the surface of CoFe2O4@SiO2@CPTMS nanocomposite. The heterogeneous Mn‐salen magnetic nanocatalyst (CoFe2O4@SiO2@CPTMS@ chiral Mn (III) Complex) was characterized by different techniques including transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), powder X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). Then, the aerobic enantioselective oxidation of olefins to the corresponding epoxide was investigated in the presence of magnetic chiral CoFe2O4@SiO2@Mn (III) complex at ambient conditions within 90 min. The results showed the corresponding products were synthesized with excellent yields and selectivity. In addition, the heterogeneous CoFe2O4@SiO2@ CPTMS@ chiral Mn (III) complex has benefits such as high selectivity and comparable catalytic reactivity with its homogeneous analog as well as mild reaction condition, facile recovery, and recycling of the heterogeneous catalyst.  相似文献   

18.
The most active and robust current catalysts for the copolymerization of carbon dioxide and epoxides or oxetanes, (salen)CrX in conjunction with PPNX (PPN(+) = (Ph3P)2N(+)) or n-Bu4NX (X = Cl, N3, CN, NCO), are characterized both in solution by infrared spectroscopy and in the solid-state by X-ray crystallography. All anions (X) afford six-coordinate chromium(III) PPN(+) or n-Bu4N(+) salts composed of trans-(salen)CrX2(-) species. Of the X groups investigated in (salen)CrX, chloride is easily displaced by the others, that is, the reaction of (salen)CrCl with 2 equiv of N3(-), CN(-), or NCO(-) quantitatively provide (salen)Cr(N3)2(-), (salen)Cr(CN)2(-), and (salen)Cr(NCO)2(-), respectively. On the other hand, addition of less than 2 equiv of azide to (salen)CrCl leads to a Schlenk (ligand redistribution) equilibrium of the three possible anions both in solution and in the solid-state as shown by X-ray crystallography and electrospray ionization mass spectrometry. It was further demonstrated that all trans-(salen)CrX2(-) anions react with the epoxide or oxetane monomers in TCE (tetrachloroethane) solution to afford an equilibrium mixture containing (salen)CrX x monomer, with the oxetane adduct being thermodynamically more favored. The ring-opening steps of the bound cyclic ether monomers by X(-) were examined, revealing the rate of ring-opening of the epoxides (cyclohexene oxide and propylene oxide) to be much faster than of oxetane, with propylene oxide faster than cyclohexene oxide. Furthermore, both X anions in (salen)CrX2(-) were shown to be directly involved in monomer ring-opening.  相似文献   

19.
Nickel lysine salen complex was successfully synthesized via a stepwise procedure and applied as a heterogeneous catalyst for styrene epoxidation. For comparison, several other transition metal (Mn, Fe, Co, and Cu) lysine salen complexes were also synthesized. The prepared catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX). Data obtained by FT-IR and Raman spectroscopy indicated the formation of C=N bonds and the complexation of these bonds with metal ions. SEM analysis revealed that the complexation of metal ions with the C=N involves the change in surface morphology of samples. In addition, atomic percent composition of samples was obtained from EDX spectra, which was the complementary evidence for the formation of complexes. Results of catalytic measurements showed that a high conversion of styrene (91.51%) and selectivity to styrene oxide (91.99%) could be achieved over the nickel lysine salen complex with tert-butyl hydroperoxide as the oxidant. When the catalyst was reused the conversion of styrene decreased but the selectivity to styrene oxide still remained high.  相似文献   

20.
An imidazole modified mesoporous material has been prepared through a co-condensation procedure and adopted to covalently anchor chiral Mn(III) salen complex. The active centers in the as-synthesized catalyst were presented in the form of ionic species. The results of XRD, FTIR, DRUV-Vis, and N2 sorption confirmed the successful immobilization of chiral Mn(III) salen complex inside the channels of the modified support and the maintenance of the mesoporous structure of parent support in the immobilized catalyst. This heterogeneous catalyst exhibited comparable catalytic activity and enantioselectivity to those of the homogeneous counterpart in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, notably high turnover frequencies have been obtained over this heterogeneous catalyst for the relatively short reaction time and low catalyst amount, due in part to the ionic property as well as the uniform distribution of the active centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号