首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lattice thermal conductivity of a semicrystalline polymer was studied at low temperatures by calculating the total lattice thermal conductivities of four samples of polyethylene with different degrees of crystallinity between 0.43 and 0.81 and temperatures between 0.4 and 20 K. The contributions of the crystalline and noncrystalline natures and their percentage contributions were taken into account. The predicted lattice thermal conductivity of polyethylene was in fairly good quantitative agreement with the experimental value, and showed a strong crystallinity dependence, with a distinctive cross-over point at about 2 K.  相似文献   

2.
The thermal conductivities of unidirectional gel-spun polyethylene fiber-reinforced composites have been measured parallel (K∥?) and perpendicular (K⊥) to the fiber axis from 15 to 300K. The axial thermal conductivity K∥? varies linearly with volume fraction vf of fiber, while the transverse thermal conductivity K⊥ follows the Halpin-Tsai equation. Extrapolation to vf = 1 gives the thermal conductivity of gel-spun polyethylene fiber which, at 300K, has values of 380 and 3.3 mW cm?1K?1 along and perpendicular to the fiber axis, respectively. The axial thermal conductivity is exceptionally high for polymers, and is more than twice the thermal conductivity of stainless steel. This high value arises from the presence of a large fraction of long (> 50 nm) extended chain crystals in the fiber. Further improvement of up to a factor of 10 is possible if the length and volume fraction of the extended chain crystals can be increased. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
A study is presented of the effect of empty space scattering in the estimation of the lattice thermal conductivity of four samples of polyethylene with different degrees of crystallinity at temperatures between 0.4 and 20 K. This study was performed by considering different values of the empty space fraction. It is found that empty space scattering plays a very important role in the calculation of the lattice thermal conductivity of semicrystalline polymers.  相似文献   

4.
High strength polyethylene fiber (Toyobo, Dyneema® fiber, hereinafter abbreviated to DF) used as reinforcement of fiber‐reinforced plastics for cryogenic use has a high thermal conductivity. To understand the thermal conductivity of DF, the relation between fiber structure and thermal conductivity of several kinds of polyethylene fibers having different modulus from 15 to 134 GPa (hereinafter abbreviated to DFs) was investigated. The mechanical series‐parallel model composed of crystal and amorphous was applied to DFs for thermal conductivity. This mechanical model was obtained by crystallinity and crystal orientation angle measured by solid state NMR and X‐ray. Thermal conductivity of DF in fiber direction was dominated by that of the continuous crystal region. The thermal conductivity of the continuous crystal part estimated by the mechanical model increases from 16 to 900 mw/cmK by the increasing temperature from 10 to 150K, and thermal diffusivity of the continuous crystal part was estimated to about 100 mm2/s, which is almost temperature independent. The phonon mean free path of the continuous crystal region of DF obtained by thermal diffusivity is almost temperature independent and its value about 200 Å. With the aforementioned, the mechanical series‐parallel model composed of crystal and amorphous regions could be applied to DFs for thermal conductivity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1495–1503, 2005  相似文献   

5.
The stress–strain behavior of various polyethylenes was measured with a strain sensitivity of 2 × 10?7. Young's modulus was measured as a function of the strain rate. The shapes of the stress–strain curves in the vicinity of room temperature were nonlinear down to the lowest measurable strain. The stress–strain behavior in the microstrain region was well described by the model of the standard linear solid. From the model, the relaxation time was determined along with the relaxed and unrelaxed moduli. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2420–2429, 2001  相似文献   

6.
Summary Low density polyethylene film is drawn at room temperature four times the original length and subjected to thermal annealing at 60, 80, and 100 °C keeping the film length constant. Long spacing measured by SAXS increased with increasing temperature of annealing; the increase of the long spacing is presumed to be due to the decrease of the number of micelles through relaxation during the annealing. Simultaneous measurement of the changes of the long spacing and the film length by stretching is carried out and stress-extension curves are obtained. The values of the initial moduli of the long spacingE 1 and the film lengthY are very near to each other. Elastic modulus of the crystal latticeE c is known to be 235 GN/m2 and that of the amorphous regionE a is found to be 0.15 GN/m2. When higher stress is applied than in the case of the initial modulus, the percentage of extension of film is much greater than that of the long spacing. The discrepancy is explained by the increase of the number of micelles through stress crystallization.Dedicated to Professor Dr. K. Ueberreiter on the occasion of his 70th birthday.  相似文献   

7.
A regular Kelvin foam model was used to predict the linear thermal expansion coefficient and bulk modulus of crosslinked, closed‐cell, low‐density polyethylene (LDPE) foams from the polymer and gas properties. The materials used for the experimental measurements were crosslinked, had a uniform cell size, and were nearly isotropic. Young's modulus of biaxially oriented polyethylene was used for modeling the cell faces. The model underestimated the foam linear thermal expansion coefficient because it assumed that the cell faces were flat. However, scanning electron microscopy showed that some cell faces were crumpled as a result of foam processing. The measured bulk modulus, which was considerably smaller than the theoretical value, was used to estimate the linear thermal expansion coefficient of the LDPE foams. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3741–3749, 2004  相似文献   

8.
Our SDFF for linear saturated hydrocarbon chains has been used to calculate the chain modulus of isolated and crystalline chains of n-alkanes of varying lengths. This has been done for static deformations and for the dynamic deformation in the longitudinal acoustic mode (LAM). Extrapolation to infinite chain length gives a common value of the room-temperature crystal modulus of 303 GPa (also obtained in an infinite chain calculation). Experimental Raman LAM measurements, corrected for chain-end interactions, give a modulus of 305 GPa, in excellent agreement. Problems with the experimental values obtained by inelastic neutron scattering and x-ray diffraction are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The thermal conductivity λ and heat capacity per unit volume of poly(propylene glycol) PPG (0.4 and 4.0 kg·mol−1 in number-average molecular weight) have been measured in the temperature range 150–295 K at pressures up to 2 GPa using the transient hot-wire method. At 295 K and atmospheric pressure, λ = 0.147 W m−1K−1 for PPG (0.4 kg·mol−1) and λ = 0.151 W m−1K−1 for PPG (4.0 kg·mol−1). The temperature dependence of λ is less than 4 × 10−4 W m−1K−2 for both molecular weights. The bulk modulus has been measured in the temperature range 215–295 K up to 1.1 GPa. At atmospheric pressure, the room temperature bulk moduli are 1.97 GPa for PPG (0.4 kg·mol−1) and 1.75 GPa for PPG (4.0 kg·mol−1). These data were used to calculate the volume dependence of $ \lambda ,g\, = - \left( {\frac{{\partial \lambda /\lambda }}{{\partial V/V}}} \right)_T $. At room temperature and atmospheric pressure (liquid phase) we find g = 2.79 for PPG (0.4 kg·mol−1) and g = 2.15 for PPG (4.0 kg·mol−1). The volume dependence of g, (∂g/∂ log V)T varies between −19 to −10 for both molecular weights. Under isochoric conditions, g is nearly independent of temperature. The difference in g between the glassy state and liquid phase is small and just outside the inaccuracy of g of about 8%. The theoretical model for λ by Horrocks and McLaughlin yields an overestimate of g by up to 120%. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 345–355, 1998  相似文献   

10.
Inclusion of conductive particles is a convenient way for the enhancement of electrical and thermal conductivities of polymers. However, improvement of the mechanical properties of such composites has remained a challenge. In this work, maleated polyethylene is proposed as a novel matrix for the production of conductive metal–thermoplastic composites with enhanced mechanical properties. The effects of two conductive particles (iron and aluminum) on the morphological, mechanical, electrical, and thermal properties of maleated polyethylene were investigated. Morphological observations revealed that the matrix had excellent adhesion with both metal particles. Increase in particle concentration was shown to improve the tensile strength and modulus of the matrix significantly with iron being slightly more effective. Through‐plane electrical conductivity of maleated polyethylene was also substantially improved after adding iron particles, while percolation was observed at particle contents of around 20–30% vol. In the case of aluminum, no percolation was observed for particle contents of up to 50% vol., which was linked to the orientation of the particles in the in‐plane direction due to the squeezing flow. Inclusion of particles led to substantial increase (over 700%) in the thermal conductivities of both composites. The addition of high concentrations of metal particles to matrix led to the creation of two groups of materials: (i) composites with high electrical and thermal conductivities and (ii) composites with low electrical and high thermal conductivities. Such characteristics of the composites are expected to provide a unique opportunity for applications where a thermally conductive/electrically insulating material is desired. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The thermal conductivity λ and heat capacity per unit volume of poly(vinyl acetate) (260 kg mol−1 in weight average molecular weight) have been measured in the temperature range 150–450 K at pressures up to 1 GPa using the transient hot-wire method, which yielded λ = 0.19 W m−1 K−1 at atmospheric pressure and room temperature. The bulk modulus K has been measured in the temperature range 150–353 K up to 1 GPa. At atmospheric pressure and room temperature, K = 4.0 GPa and (∂K/∂p)T = 8.3. The volume data were used to calculate the volume dependence of λ, $g = - \left( {\frac{{\partial \lambda /\lambda }}{{\partial V/V}}} \right)_T .$ The values for g of the liquid and glassy states were 3.0 and 2.7, respectively, and g of the latter was almost independent of volume and temperature. Theoretical models can predict the value for g of the glassy state to within 25%. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1451–1463, 1998  相似文献   

12.
This paper is concerned with the temperature dependence of mechanical properties of ultradrawn polyethylene in terms of storage modulus E' and loss factor tan by the measurement of the complex dynamic tensile modulus over ranges of temperature from 20 to 140 C. Interestingly, E' of a specimen with drawn ratio of 300 is about 120 GPa at 140 C, when the measurement is carried out at a frequency of 100 Hz. This is a very high value. In addition, the drawn specimens were irradiated to try to produce ultra-drawn polyethylene films with more excellent mechanical and thermal properties. However, the melting peak shifts to a lower temperature with increasing radiation dose. This result is probably attributed to the considerably radiation-induced scission of extended chains constructing crystals.  相似文献   

13.
The effect on rheological properties on mixing one gel-forming and one nongelling polymer is investigated. It is found that on addition of a nongelling polymer to a constant amount of gel-forming polymer, the shear modulus of the resulting gel can either decrease or increase depending on the polymers. The results are interpreted within a simple qualitative model based on polymer incompatibility in combination with percolation theory and a uniform stress approximation.  相似文献   

14.
The thermal conductivity λ and heat capacity per unit volume ρcp of poly(isobutylene)s, one 2.8 in weight average molecular weight and one 85 kg mol−1 in viscosity average molecular weight (PIB-2800 and PIB-85000), have been measured in the temperature range 170–450 K at pressures up to 2 GPa using the transient hot-wire method. At 297 K and atmospheric pressure, λ = 0.115 W m−1 K−1 for PIB-2800 and λ = 0.120 W m−1 K−1 for PIB-85000. The bulk modulus BT has been measured in the temperature range 170–297 K up to 1 GPa. At atmospheric pressure, the room temperature bulk moduli BT are 2.0 GPa for PIB-2800 and 2.5 GPa for PIB-85000 with dBT/dp = 10 for both. These data were used to calculate the volume dependence of λ, At room temperature and atmospheric pressure (liquid phase) we find g = 3.4 for PIB-2800 and g = 3.9 for PIB-85000, but g depends strongly on temperature for both molecular weights. The difference in g between the glassy state and liquid phase is small and just outside the inaccuracy of g of about 8%. The best predictions for g are given by the theoretical model of Horrocks and McLaughlin. We have found that PIB exhibits two relaxations, where one is associated with the glass transition. The value for dTg/dp at atmospheric pressure (for the main glass transition) is about 0.21 K MPa−1 for both molecular weights. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1781–1792, 1998  相似文献   

15.
The elastic moduli El of the crystalline regions of α‐chitin and chitosan in the direction parallel to the chain axis were measured by X‐ray diffraction. The El values were 41 GPa for α‐chitin, and 65 GPa for chitosan, respectively, at 20°C. The contracted skeletons of α‐chitin and chitosan are the key factor for the low El values compared with that (138 GPa) of cellulose I. The El value of α‐chitin was constant at 41 GPa both at −190°C and 150°C, which indicates that the molecular chain of α‐chitin is stable against heat within the temperature and stress range studied. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1191–1196, 1999  相似文献   

16.
Various techniques and methodologies of thermal conductivity measurement have been based on the determination of the rate of directional heat flow through a material having a unit temperature differential between its opposing faces. The constancy of the rate depends on the material density, its thermal resistance and the heat flow path itself. The last of these variables contributes most significantly to the true value of steady-state axial and radial heat dissipation depending on the magnitude of transient thermal diffusivity along these directions. The transient hot-wire technique is broadly used for absolute measurements of the thermal conductivity of fluids. Refinement of this method has resulted in a capability for accurate and simultaneous measurement of both thermal conductivity and thermal diffusivity together with the determination of the specific heat. However, these measurements, especially those for the thermal diffusivity, may be significantly influenced by fluid radiation. Recently developed corrections have been used to examine this assumption and rectify the influence of even weak fluid radiation. A thermal conductivity cell for measurement of the thermal properties of electrically conducting fluids has been developed and discussed.  相似文献   

17.
A new sensitive thermal analysis for the observation of re-orientation behavior in the melting region of the ultradrawn poly(ethylene) film was proposed by the simultaneous measurement of thermal diffusivity and birefringence under optical microscope in a constant heating rate. Thermal diffusivity was obtained by the phase delay of temperature wave passed through the thickness direction of the specimen. The results correspond with each other over wide temperature range including melting temperature. It was concluded that the thermal diffusivity measurement was more sensitive not only to detect the molecular relaxation in a continuous heating run, but also to find out the delicate variation of chain direction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Elastic modulus of the crystalline regions of cellulose polymorphs   总被引:1,自引:0,他引:1  
The elastic modulus El of the crystalline regions of cellulose polymorphs in the direction parallel to the chain axis was measured by x-ray diffraction. The El values of cellulose I, II, IIII, IIIII, and IVI were 138, 88, 87, 58, 75 GPa, respectively. This indicates that the skeletons of these polymorphs are completely different from each other in the mechanical point of view. The crystal transition induces a skeletal contraction accompanied by a change in intramolecular hydrogen bonds, which is considered to result in a drastic change in the El value of the cellulose polymorphs. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Young's modulus E for polyethylene in the chain direction is calculated with molecular orbital theory applied to n-alkanes C3H8 through n-C13H28 and analyzed with the cluster-difference method. Semiempirical CNDO, MNDO, and AM1 models and ab initio HF/STO-3G, HF/6-31G, HF/6-31G*, and MP2/6-31G* models are used. Cluster-difference results, when extrapolated to infinite chain length, give E in good agreement with moduli evaluated with molecular cluster or crystal orbital methods, provided minimal basis sets are employed. E decreases from 495 GPa (CNDO) to 336 GPa (MP2/6-31G*) as the level of theory is improved, consistent with established behaviors of the various models. Our calculations do not reproduce earlier molecular cluster or crystal orbital results, which gave E < 330 GPa. The most rigorous MP2/6-31G* model is known to overestimate force constants by ∼ 11%; the scaled modulus E = 299 GPa is in good accord with E = 306 GPa from recent calculations based on experimental vibration frequencies. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The thermal conductivity of polyolefins and halogen-substituted polymers was studied in a broad temperature interval spanning both solid and melt states, in the range of pressures from 0.1 up to 100 MPa with the aid of a high-pressure-calorimeter in the continuous heating regime. Treatment of data on the pressure dependence of the thermal conductivity of melts in terms of Barker's equation yielded the values of quasilattice Grueneisen parameter B which exhibited the same dependence on molecular structure of a polymer as the parameter 3C/p from the Simha-Somcynsky equation of state (number of external degress of freedom per chain repeat unit). Analysis of the dependence of the thermal conductivity of polyethylene on the degree of crystallinity revealed the inadequacy of the current two-phase model which does not account for the microheterogeneity of the amorphous phase. It was concluded that interchain heat transfer makes the dominant contribution to the thermal conductivity of polymers both in amorphous and in crystalline states.
Zusammenfassung Mit Hilfe eines Hochdruck-- Kalorimeters mit kontinuierlicher Aufheizung wurde im Druckintervall 0,1 bis 100 MPa und in einem breiten Temperaturbereich, in den sowohl feste als auch flüssige Zustände gehören, die Wärmeleitfähigkeit von Polyolefinen und halogenierten Polymeren untersucht. Drückt man die Druckabhängigkeit der Wärmeleitfähigkeit der Schmelzen mit Hilfe der Barkerschen Gleichung aus, erhält man die Werte für den Quasigitter Grueneisen-Parameterb, der die gleiche Abhängigkeit von der Molekular-struktur eines Polymers zeigt, wie der Parameter 3C/p aus der Gleichung von Simha-Somcynsky (Zahl der externen Freiheitsgrade geteilt durch Kettenstruktureinheit). Eine Untersuchung der Abhängigkeit der Wärmeleitfähigkeit von Polyethylen von Kristallinitäts-grad zeigt die Mängel dieses Zwei-Phasen-Modelles, was die Mikroheterogenität der amorph-en Phase nicht erklärt. Man zog die Schlußfolgerung, daß ein Wärmetransport zwischen den Ketten sowohl im amorphen als auch im kristallinen Zustand den entscheidenden Beitrag zur Wärmeleitfähigkeit von Polymeren liefert.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号