首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ring opening metathesis polymerization (ROMP) was carried out on Diels‐Alder adducts formed from reactions between chalcones and cyclopentadiene. Most of the chalcones gave predominantly endo‐adducts and the exo‐adducts were obtained in good yields from reacting cyclopentadiene with furfurylidine acetone and N,N,diethylaminobenzylidine‐(4‐hydroxy)acetophenone. These exo‐adducts were subjected to ROMP using Grubbs catalyst, bis(tricyclohexylphosphine)benzylidinedichloride. The monomers and polymers were characterized using spectroscopic techniques like FT‐IR, 1HNMR. The polymers were characterized using TGA, DSC, and GPC. The polymers were found to possess fluorescent properties and poly[2‐(4‐diethylamino)phenyl‐3,5‐divinylcyclopentyl](4‐hydroxyphenyl) methanone was found to have good emissive property at two wavelengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1521–1531, 2008  相似文献   

2.
1‐Benzocyclobutenyl vinyl ether (1) was easily prepared by the elimination reaction of hydrogen bromide from 1‐benzocyclobutenyl 1‐bromoethyl ether obtained by 1‐bromobenzocyclobutene and ethylene glycol via two steps in a good yield. Cationic polymerizations of 1 was carried out at −78°C for 2 h in toluene in the presence of BF3OEt2 as an initiator to give quantitatively the corresponding polymers (2) as white solids. As a model reaction of the polymer reaction of 2 with dienophiles, the Diels–Alder reactions of 1‐methoxybenzocyclobutene with maleic anhydride (MA) in toluene at 100–140°C for 3 h were carried out to obtain the corresponding Diels–Alder adduct quantitatively at 140°C. The polymer reactions of 2 with MA and N‐phenylmaleimide (MI) in toluene were carried out to yield the corresponding Diels–Alder adduct polymers in good yields. The degree of introduction of the dienophile could be controlled by temperature, and the unreacted benzocyclobutene moiety could further react with another benzocyclobutene moiety or dienophile. The properties (solubilities, Tg, and temperature of 10% weight loss) of the polymers obtained from the polymer reaction were quite different from those of 2. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 59–67, 1999  相似文献   

3.
Synthesis of cysteine‐terminated linear polystyrene (PS)‐b‐poly(ε‐caprolactone) (PCL)‐b‐poly(methyl methacrylate) (PMMA)/or poly(tert‐butyl acrylate)(PtBA)‐b‐poly(ethylene glycol) (PEG) copolymers was carried out using sequential quadruple click reactions including thiol‐ene, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), Diels–Alder, and nitroxide radical coupling (NRC) reactions. N‐acetyl‐L ‐cysteine methyl ester was first clicked with α‐allyl‐ω‐azide‐terminated PS via thiol‐ene reaction to create α‐cysteine‐ω‐azide‐terminated PS. Subsequent CuAAC reaction with PCL, followed by the introduction of the PMMA/or PtBA and PEG blocks via Diels–Alder and NRC, respectively, yielded final cysteine‐terminated multiblock copolymers. By 1H NMR spectroscopy, the DPns of the blocks in the final multiblock copolymers were found to be close to those of the related polymer precursors, indicating that highly efficient click reactions occurred for polymer–polymer coupling. Successful quadruple click reactions were also confirmed by gel permeation chromatography. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
We have studied the solvent, temperature, and pressure influences on the reaction rates of cyclic and acyclic N=N bonds in the Diels–Alder and ene reactions. The transfer from N‐phenylmaleimide ( 9 ) to a structural analogue, 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 2 ), is accompanied by the rate increase in five to six orders of magnitude in the Diels–Alder reactions with cyclopentadiene ( 4 ) and 9,10‐dimethylanthracene ( 5 ), whereas the transfer from dimethyl fumarate ( 10 ) to diethyl azodicarboxylate ( 1 ) increases only in one to two orders of magnitude. The ratio of the reaction rate constants ( 2 + 4 )/( 1 + 4 ) is very large (5.2 × 107) and almost the same (5.3 × 107) as in the ene reactions with tetramethylethylene ( 7 ), ( 2 + 7 )/( 1 + 7 ). It has been observed that the N=N bond in reagent 2 has strong electrophilic, and its N–N moiety in the transition state has nucleophilic properties, which results from the analysis of the solvation enthalpy transfer of reagents, activated complex, and adduct in the Diels–Alder reaction of 2 with anthracene 22 .  相似文献   

5.
Rolf Huisgen explored the Diels–Alder reactions of 1,3,5‐cycloheptatriene (CHT) and cyclooctatetraene (COT) with the dienophiles maleic anhydride and 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione (PTAD) to determine the kinetics and mechanisms of various electrocyclizations and Diels–Alder reactions. These reactions have been examined with density functional theory. Modern computational chemistry has provided information not previously available by experiment. Transition states for all the reactions have been identified, and their Gibbs energies are used to explain the experimental reactivities. Zwitterionic intermediates were not found in the [4+2] cycloadditions of both CHT or COT with PTAD and are thus not involved in these reactions. [2+2+2] cycloadditions, as an alternative path to the Diels–Alder products, are highly disfavored. Rapid double nitrogen inversion was found for the cycloaddition products with PTAD.  相似文献   

6.
We synthesized biobased poly(2,5‐furandimethylene succinate‐co‐butylene succinate) [P(FS‐co‐BS)] copolymers by polycondensation of 2,5‐bis(hydroxymethyl)furan, 1,4‐butanediol, and succinic acid. These copolymers could be crosslinked to form network polymers by means of a reversible Diels–Alder reaction with bis‐maleimide. The thermal properties, mechanical properties, and healing abilities of the P(FS‐co‐BS)s and the network polymers were investigated. The mechanical properties of the network polymers depended on the comonomer composition of the P(FS‐co‐BS)s and the maleimide/furan ratio in the network polymers. Some of the copolymers exhibited healing ability at room temperature, and their healing efficiency was enhanced by solvent or heat. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 216–222  相似文献   

7.
Four new bisdienes were prepared from 2-bromomethyl-1,3-butadiene and N,N-diethyl benzidine; bis[4-(N-ethyl) aminophenyl]-p-diisopropylbenzene, 1,4-diamino-2,3,5,6-tetramethylbenzene and α,α′ bis(4-amino-3,5-dimethyl phenyl)-p-diisopropyl benzene. Polyimides were synthesized by the Diels–Alder reaction of these bisdienes and bis(4-maleimidylphenyl)methane and bis(3-maleimidylphenyl) sulfone. The polymers were soluble in m -cresol, dimethyl sulfoxide and chlorinated hydrocarbon solvents. Moderate thermal stability was observed by thermogravimetric analysis in air and nitrogen.  相似文献   

8.
A number of diblock copolymers were successfully prepared by Diels–Alder reaction, between maleimide‐ and anthracene‐end functionalized poly (methyl methacrylate) (PMMA), polystyrene (PS), poly(tert‐butyl acrylate) (PtBA), and poly(ethylene glycol) (PEG) in toluene, at 110 °C. For this purpose, 2‐bromo‐2‐methyl‐propionic acid 2‐(3,5‐dioxo‐10‐oxa‐4‐azatricyclo[5.2.1.02,6]dec‐8‐en‐4‐yl)‐ethyl ester, 2 , 9‐anthyrylmethyl 2‐bromo‐2‐methyl propanoate, 3 , and 2‐bromo‐propionic acid 2‐(3,5‐dioxo‐10‐oxa‐4‐azatricyclo[5.2.1.02,6]dec‐8‐en‐4‐yl)‐ethyl ester, 4 , were used as initiators in atom transfer radical polymerization, in the presence of Cu(I) salt and pentamethyldiethylenetriamine (PMDETA), at various temperatures. On the other hand, PEG with maleimide‐ or anthracene‐end functionality was achieved by esterification between monohydroxy PEG and succinic acid monoathracen‐9‐ylmethyl ester, 1 , or 4‐maleimido‐benzoyl chloride. Thus‐obtained PMMA‐b‐PS, PEG‐b‐PS, PtBA‐b‐PS, and PMMA‐b‐PEG block copolymers were characterized by 1H NMR, UV, and GPC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1667–1675, 2006  相似文献   

9.
Diels–Alder click reaction was successfully applied for the preparation of 3‐arm star polymers (A3) using furan protected maleimide end‐functionalized polymers and trianthracene functional linking agent (2) at reflux temperature of toluene for 48 h. Well‐defined furan protected maleimide end‐functionalized polymers, poly (ethylene glycol), poly(methyl methacrylate), and poly(tert‐butyl acrylate) were obtained by esterification or atom transfer radical polymerization. Obtained star polymers were characterized via NMR and GPC (refractive index and triple detector detection). Splitting of GPC traces of the resulting polymer mixture notably displayed that Diels–Alder click reaction was a versatile and a reliable route for the preparation of A3 star polymer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 302–313, 2008  相似文献   

10.
A series of readily accessible, dynamic Diels–Alder reactions that are reversible at room temperature have been developed between anthracene derivatives as dienes and N‐phenyl‐1,2,4‐triazoline‐3,5‐dione as the dienophile. The adducts formed undergo reversible component exchange to form dynamic libraries of equilibrating cycloadducts. Furthermore, reversible adduct formation allows temperature‐dependent modulation of the fluorescent properties of anthracene components; a feature of potential interest for the design of optodynamic polymeric materials by careful selection and manipulation of these simple dienes and dienophiles.  相似文献   

11.
Anthracene‐functionalized oxanorbornene monomer and oxanorbornenyl polystyrene (PS) with ω‐anthracene end‐functionalized macromonomer were first polymerized via ring‐opening metathesis polymerization using the first‐generation Grubbs' catalyst in dichloromethane at room temperature and then clicked with maleimide end‐functionalized polymers, poly(ethylene glycol) (PEG)‐MI, poly(methyl methacrylate) (PMMA)‐MI, and poly(tert‐butyl acrylate) (PtBA)‐MI in a Diels–Alder reaction in toluene at 120 °C to create corresponding graft copolymers, poly(oxanorbornene)‐g‐PEG, poly(oxanorbornene)‐g‐PMMA, and graft block copolymers, poly(oxanorbornene)‐g‐(PS‐b‐PEG), poly(oxanorbornene)‐g‐(PS‐b‐PMMA), and poly(oxanorbornene)‐g‐(PS‐b‐PtBA), respectively. Diels–Alder click reaction efficiency for graft copolymerization was monitored by UV–vis spectroscopy. The dn/dc values of graft copolymers and graft block copolymers were experimentally obtained using a triple detection gel permeation chromatography and subsequently introduced to the software so as to give molecular weights, intrinsic viscosity ([η]) and hydrodynamic radius (Rh) values. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Cross‐linked poly(ε‐caprolactone) (PCL)‐based polyesterurethane (PUR) systems have been synthesized through Diels–Alder reactions by reactive extrusion. The Diels–Alder and retro‐Diels–Alder reactions proved to be useful for enhancing the molecular motion of PCL‐based systems, and therefore their crystallization ability, in the design of cross‐linked semicrystalline polymers with one‐way and two‐way shape‐memory properties. Successive reactions between α,ω‐diol PCL (PCL2), furfuryl alcohol, and methylene diphenyl 4,4′‐diisocyanate straightforwardly afforded the α,ω‐furfuryl PCL‐based PUR systems, and subsequent Diels–Alder reactions with N,N‐phenylenedimaleimide afforded the thermoreversible cycloadducts. The cross‐linking density could be modulated by partially replacing PCL‐diol with PCL‐tetraol. Interestingly, the resulting PUR systems proved to be semicrystalline cross‐linked polymers, the melting temperature of which (close to 45 °C) represented the switching temperature for their shape‐memory properties. Qualitative and quantitative measurements demonstrated that these PUR systems exhibited one‐way and two‐way shape‐memory properties depending on their cross‐linking density.  相似文献   

13.
We report here a simple and universal synthetic pathway covering triple click reactions, Diels–Alder, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), and nitroxide radical coupling (NRC), to prepare well‐defined graft copolymers with V‐shaped side chains. The Diels–Alder click reaction between the furan protected‐maleimide‐terminated poly(ethylene glycol) (PEG) and a trifunctional core ( 1 ) carrying an anthracene, alkyne, and bromide was carried out to yield the corresponding α‐alkyne‐ and α‐bromide‐terminated PEG (PEG‐alkyne/Br) in toluene at 110 °C. Subsequently, the polystyrene or polyoxanorbornene with pendant azide functionality as a main backbone is reacted with the PEG‐alkyne/Br and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐terminated poly(ε‐caprolactone) using the CuAAC and NRC reactions in a one‐pot fashion in N,N′‐dimethylformamide at room temperature to result in the target V‐shaped graft copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4667–4674  相似文献   

14.
Diels–Alder reactions of 5‐[methoxypoly(oxyethylene)]‐(3E)‐1,3‐pentadiene ( 1a ) with maleic anhydride, diethyl acetylenedicarboxylate (DADC), and acrolein were investigated for the synthesis of new poly(ethylene glycol) derivatives. To facilitate the characterization of the derivatives, Diels–Alder reactions of 5‐methoxyethoxy‐(3E)‐1,3‐pentadiene ( 1b ) with the aforementioned dienophiles were also studied. The reaction of o‐toluidine with the cycloaddition product from maleic anhydride and 1b resulted in the corresponding amide products. The reactions of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone with cycloadducts derived from 1a and 1b with DADC resulted in the aromatization of the corresponding products. An NMR analysis of the adducts obtained from 1a and acrolein in water and from 1b and acrolein in water/acetonitrile (4:1 v/v) indicated a mixture of endo and exo, with the endo concentration being approximately 80%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1895–1902, 2005  相似文献   

15.
We have developed a new strategy for the synthesis of epoxide‐containing polymers where the pendant reactive groups are connected to the main backbone via thermally labile oxonorbornene groups. The polymers were synthesized by radical 1,4‐polymerization of the appropriate bicyclic diene monomer. The produced polymers can be crosslinked in the presence of a diamine and de‐crosslinked by thermal treatment at 160 °C, which induces retro‐Diels–Alder reaction and cleaves pendant groups from the polymer backbone, as confirmed by differential scanning calorimetry. The potential for the utilization of this polymer as a thermally removable adhesive was demonstrated by a simple adhesion test. This method provides access to thermally cleavable epoxy networks that can be quickly and irreversibly disintegrated into nonvolatile components upon heating to a specified temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4992–4997  相似文献   

16.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

17.
The aliphatic polyurethane with pendant alkyne, perfluorophenyl, and anthracene moieties (PU‐anthracene) was prepared from polycondensation of anthracene, alkyne, and perfluorophenyl functional‐diols with hexamethylenediisocyanate in the presence of dibutyltindilaurate (DBTL) in CH2Cl2 at room temperature for 10 days. Thereafter, the PU‐(anthracene‐co‐alkyne‐co‐perfluorophenyl) (Mn,GPC = 15,400 g/mol, Mw/Mn= 1.37, relative to PS standards) was sequentially clicked with benzyl azide, octylamine, and 4‐(2‐hydroxyethyl)?10‐oxa‐4‐azatricyclo[5.2.1.02,6]dec‐8‐ene‐3,5‐dione (adduct alcohol) via copper‐catalyzed azide‐alkyne cycloaddition, active ester substitution and Diels–Alder reactions, respectively, to finally yield PU‐(hydroxyl‐co‐benzyltriazole‐co‐octylamine). The PUs were characterized using 1H NMR, GPC, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 480–486  相似文献   

18.
A microporous polymer is prepared by a catalyst‐free Diels–Alder reaction. A cyclopentadiene with both a diene and a dienophile functionality and a dienophilic maleimide are used for the Diels–Alder reaction. 1,3,5‐Tris(bromomethyl)‐2,4,6‐trimethylbenzene is reacted with sodium cyclopentadienide to produce the multicyclopentadiene‐functionalized monomer. A crosslinked polymer ( CDAP ) is obtained by the reaction of the cyclopentadiene monomer with N,N′‐1,4‐phenylenedimaleimide. The thermal dissociation of the cyclopentadiene dimeric unit and the subsequent Diels–Alder reaction with the maleimide group are investigated by the model reaction. We are able to restructure the crosslinked polymer network by taking advantage of the thermal reversibility of the Diels–Alder linkage. After the post thermal treatment, the BET surface area of the polymer ( CDAP‐T ) is greatly increased from 317 to 1038 m2 g?1. CDAP‐T is functionalized with pyrene by bromination with N‐bromosuccinimide and the subsequent substitution reaction with aminopyrene. The adsorption property of the pyrene‐functionalized polymer for an aromatic dye is investigated using malachite green. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3646–3653  相似文献   

19.
Tetrazine mediated inverse Electron Demand Diels–Alder Reaction (IEDDA) is an important modification technique due to its high selectivity and super‐fast kinetics. Incorporation of tetrazine moieties on polymer chains requires multistep synthetic pathways and a post‐polymerization step leading to functional polymeric materials. Such approaches involve separate syntheses of polymer and the molecule which will be employed in modification. Herein, we introduce a straightforward synthetic approach for direct synthesis of tetrazine groups on polymers as side chains. As model systems, tetrazine functional poly(N‐isopropylacrylamide)‐and poly(ethylene glycol)‐based polymers from corresponding precursor polymers with nitrile moieties as pendant groups are prepared and IEDDA Click Reaction is achieved with trans‐cyclooctene derivatives. The click reaction is monitored by both NMR and UV–vis spectroscopies. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 673–680  相似文献   

20.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号